TY - JOUR AB - We studied the low-energy states of spin-1/2 quantum dots defined in InAs/InP nanowires and coupled to aluminum superconducting leads. By varying the superconducting gap Δ with a magnetic field B we investigated the transition from strong coupling Δ≪T K to weak-coupling Δ≫T K, where T K is the Kondo temperature. Below the critical field, we observe a persisting zero-bias Kondo resonance that vanishes only for low B or higher temperatures, leaving the room to more robust subgap structures at bias voltages between Δ and 2Δ. For strong and approximately symmetric tunnel couplings, a Josephson supercurrent is observed in addition to the Kondo peak. We ascribe the coexistence of a Kondo resonance and a superconducting gap to a significant density of intragap quasiparticle states, and the finite-bias subgap structures to tunneling through Shiba states. Our results, supported by numerical calculations, own relevance also in relation to tunnel-spectroscopy experiments aiming at the observation of Majorana fermions in hybrid nanostructures. AU - Lee, Eduardo J AU - Jiang, Xiaocheng AU - Aguado, Ramón AU - Georgios Katsaros AU - Lieber, Charles M AU - De Franceschi, Silvano ID - 1758 IS - 18 JF - Physical Review Letters TI - Zero-bias anomaly in a nanowire quantum dot coupled to superconductors VL - 109 ER -