@article{1809, abstract = {Background: Indirect genetic effects (IGEs) occur when genes expressed in one individual alter the expression of traits in social partners. Previous studies focused on the evolutionary consequences and evolutionary dynamics of IGEs, using equilibrium solutions to predict phenotypes in subsequent generations. However, whether or not such steady states may be reached may depend on the dynamics of interactions themselves. Results: In our study, we focus on the dynamics of social interactions and indirect genetic effects and investigate how they modify phenotypes over time. Unlike previous IGE studies, we do not analyse evolutionary dynamics; rather we consider within-individual phenotypic changes, also referred to as phenotypic plasticity. We analyse iterative interactions, when individuals interact in a series of discontinuous events, and investigate the stability of steady state solutions and the dependence on model parameters, such as population size, strength, and the nature of interactions. We show that for interactions where a feedback loop occurs, the possible parameter space of interaction strength is fairly limited, affecting the evolutionary consequences of IGEs. We discuss the implications of our results for current IGE model predictions and their limitations.}, author = {Trubenova, Barbora and Novak, Sebastian and Hager, Reinmar}, journal = {PLoS One}, number = {5}, publisher = {Public Library of Science}, title = {{Indirect genetic effects and the dynamics of social interactions}}, doi = {10.1371/journal.pone.0126907}, volume = {10}, year = {2015}, }