{"date_updated":"2025-02-27T12:32:40Z","quality_controlled":"1","title":"On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn","has_accepted_license":"1","issue":"2","file":[{"relation":"main_file","file_size":731175,"creator":"dernst","success":1,"file_id":"18830","file_name":"2024_JourAlgebra_Loewit.pdf","date_updated":"2025-01-13T08:57:57Z","checksum":"eb240e93c178e48429ad918c9058f1fe","date_created":"2025-01-13T08:57:57Z","access_level":"open_access","content_type":"application/pdf"}],"article_type":"original","volume":663,"publication":"Journal of Algebra","publisher":"Elsevier","citation":{"ista":"Löwit J. 2025. On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn. Journal of Algebra. 663(2), 81–118.","ama":"Löwit J. On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn. Journal of Algebra. 2025;663(2):81-118. doi:10.1016/j.jalgebra.2024.08.033","chicago":"Löwit, Jakub. “On modulo ℓ Cohomology of P-Adic Deligne–Lusztig Varieties for GLn.” Journal of Algebra. Elsevier, 2025. https://doi.org/10.1016/j.jalgebra.2024.08.033.","mla":"Löwit, Jakub. “On modulo ℓ Cohomology of P-Adic Deligne–Lusztig Varieties for GLn.” Journal of Algebra, vol. 663, no. 2, Elsevier, 2025, pp. 81–118, doi:10.1016/j.jalgebra.2024.08.033.","short":"J. Löwit, Journal of Algebra 663 (2025) 81–118.","apa":"Löwit, J. (2025). On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn. Journal of Algebra. Elsevier. https://doi.org/10.1016/j.jalgebra.2024.08.033","ieee":"J. Löwit, “On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn,” Journal of Algebra, vol. 663, no. 2. Elsevier, pp. 81–118, 2025."},"arxiv":1,"corr_author":"1","abstract":[{"text":"In 1976, Deligne and Lusztig realized the representation theory of finite groups of Lie type inside étale cohomology of certain algebraic varieties. Recently, a p-adic version of this theory started to emerge: there are p-adic Deligne–Lusztig spaces, whose cohomology encodes representation theoretic information for p-adic groups – for instance, it partially realizes the local Langlands correspondence with characteristic zero coefficients. However, the parallel case of coefficients of positive characteristic ℓ≠p has not been inspected so far. The purpose of this article is to initiate such an inspection. In particular, we relate cohomology of certain p-adic Deligne–Lusztig spaces to Vignéras's modular local Langlands correspondence for GLn.","lang":"eng"}],"tmp":{"short":"CC BY (4.0)","image":"/images/cc_by.png","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode"},"external_id":{"arxiv":["2404.11176"],"isi":["001325207800001"]},"publication_status":"published","OA_type":"hybrid","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","day":"01","status":"public","date_published":"2025-02-01T00:00:00Z","_id":"18154","type":"journal_article","intvolume":" 663","oa_version":"Published Version","ddc":["510"],"author":[{"first_name":"Jakub","last_name":"Löwit","full_name":"Löwit, Jakub","id":"e3b80ae2-eb8e-11eb-b029-9aef4a9108a0"}],"OA_place":"publisher","page":"81-118","date_created":"2024-09-29T22:01:37Z","oa":1,"doi":"10.1016/j.jalgebra.2024.08.033","department":[{"_id":"TaHa"}],"language":[{"iso":"eng"}],"publication_identifier":{"issn":["0021-8693"],"eissn":["1090-266X"]},"article_processing_charge":"Yes (via OA deal)","file_date_updated":"2025-01-13T08:57:57Z","isi":1,"scopus_import":"1","year":"2025","month":"02"}