{"_id":"18295","year":"2024","author":[{"id":"d6423cba-dc74-11ea-a0a7-ee61689ff5fb","first_name":"Jakob","full_name":"Glas, Jakob","last_name":"Glas"}],"citation":{"chicago":"Glas, Jakob. “Canonical Singularities on Moduli Spaces of Rational Curves via the Circle Method.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2405.16648.","apa":"Glas, J. (n.d.). Canonical singularities on moduli spaces of rational curves via the circle method. arXiv. https://doi.org/10.48550/arXiv.2405.16648","short":"J. Glas, ArXiv (n.d.).","ieee":"J. Glas, “Canonical singularities on moduli spaces of rational curves via the circle method,” arXiv. .","ama":"Glas J. Canonical singularities on moduli spaces of rational curves via the circle method. arXiv. doi:10.48550/arXiv.2405.16648","mla":"Glas, Jakob. “Canonical Singularities on Moduli Spaces of Rational Curves via the Circle Method.” ArXiv, doi:10.48550/arXiv.2405.16648.","ista":"Glas J. Canonical singularities on moduli spaces of rational curves via the circle method. arXiv, 10.48550/arXiv.2405.16648."},"month":"05","oa":1,"language":[{"iso":"eng"}],"title":"Canonical singularities on moduli spaces of rational curves via the circle method","publication":"arXiv","department":[{"_id":"TiBr"}],"tmp":{"name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","image":"/images/cc_by.png"},"main_file_link":[{"url":"https://doi.org/10.48550/arXiv.2405.16648","open_access":"1"}],"publication_status":"submitted","oa_version":"Preprint","status":"public","doi":"10.48550/arXiv.2405.16648","date_published":"2024-05-26T00:00:00Z","day":"26","OA_place":"repository","project":[{"_id":"bd8a4fdc-d553-11ed-ba76-80a0167441a3","name":"Rational curves via function field analytic number theory","grant_number":"P36278"}],"date_updated":"2024-10-11T09:44:22Z","corr_author":"1","user_id":"8b945eb4-e2f2-11eb-945a-df72226e66a9","article_processing_charge":"No","abstract":[{"text":"By developing a suitable version of the circle method, we show that the space of degree e rational curves on a smooth hypersurface of degree d has only canonical singularities provided its dimension is sufficiently large with respect to e and d.","lang":"eng"}],"type":"preprint","date_created":"2024-10-10T13:15:43Z","related_material":{"record":[{"status":"public","id":"18132","relation":"dissertation_contains"}]},"external_id":{"arxiv":["2405.16648"]},"arxiv":1}