{"status":"public","main_file_link":[{"url":"https://doi.org/10.48550/arXiv.1012.5933","open_access":"1"}],"_id":"18377","day":"22","citation":{"ieee":"D. Raviv, M. M. Bronstein, A. M. Bronstein, R. Kimmel, and N. Sochen, “Affine-invariant diffusion geometry for the analysis of deformable 3D shapes,” in CVPR 2011, Colorado Springs, CO, United States, 2011.","ama":"Raviv D, Bronstein MM, Bronstein AM, Kimmel R, Sochen N. Affine-invariant diffusion geometry for the analysis of deformable 3D shapes. In: CVPR 2011. IEEE; 2011. doi:10.1109/cvpr.2011.5995486","ista":"Raviv D, Bronstein MM, Bronstein AM, Kimmel R, Sochen N. 2011. Affine-invariant diffusion geometry for the analysis of deformable 3D shapes. CVPR 2011. IEEE Computer Vision and Pattern Recognition (CVPR) 2011, 5995486.","short":"D. Raviv, M.M. Bronstein, A.M. Bronstein, R. Kimmel, N. Sochen, in:, CVPR 2011, IEEE, 2011.","apa":"Raviv, D., Bronstein, M. M., Bronstein, A. M., Kimmel, R., & Sochen, N. (2011). Affine-invariant diffusion geometry for the analysis of deformable 3D shapes. In CVPR 2011. Colorado Springs, CO, United States: IEEE. https://doi.org/10.1109/cvpr.2011.5995486","chicago":"Raviv, Dan, Michael M. Bronstein, Alex M. Bronstein, Ron Kimmel, and Nir Sochen. “Affine-Invariant Diffusion Geometry for the Analysis of Deformable 3D Shapes.” In CVPR 2011. IEEE, 2011. https://doi.org/10.1109/cvpr.2011.5995486.","mla":"Raviv, Dan, et al. “Affine-Invariant Diffusion Geometry for the Analysis of Deformable 3D Shapes.” CVPR 2011, 5995486, IEEE, 2011, doi:10.1109/cvpr.2011.5995486."},"article_processing_charge":"No","quality_controlled":"1","abstract":[{"lang":"eng","text":"We introduce an (equi-)affine invariant diffusion geometry by which surfaces that go through squeeze and shear transformations can still be properly analyzed. The definition of an affine invariant metric enables us to construct an invariant Laplacian from which local and global geometric structures are extracted. Applications of the proposed framework demonstrate its power in generalizing and enriching the existing set of tools for shape analysis."}],"oa_version":"Preprint","date_published":"2011-08-22T00:00:00Z","title":"Affine-invariant diffusion geometry for the analysis of deformable 3D shapes","user_id":"3E5EF7F0-F248-11E8-B48F-1D18A9856A87","publisher":"IEEE","publication_status":"published","language":[{"iso":"eng"}],"publication":"CVPR 2011","conference":{"name":"IEEE Computer Vision and Pattern Recognition (CVPR) 2011","location":"Colorado Springs, CO, United States","start_date":"2011-06-20","end_date":"2011-06-25"},"author":[{"full_name":"Raviv, Dan","first_name":"Dan","last_name":"Raviv"},{"full_name":"Bronstein, Michael M.","first_name":"Michael M.","last_name":"Bronstein"},{"orcid":"0000-0001-9699-8730","first_name":"Alexander","full_name":"Bronstein, Alexander","last_name":"Bronstein","id":"58f3726e-7cba-11ef-ad8b-e6e8cb3904e6"},{"full_name":"Kimmel, Ron","first_name":"Ron","last_name":"Kimmel"},{"first_name":"Nir","full_name":"Sochen, Nir","last_name":"Sochen"}],"external_id":{"arxiv":["1012.5933"]},"year":"2011","publication_identifier":{"isbn":["9781457703942"],"eissn":["1063-6919"]},"doi":"10.1109/cvpr.2011.5995486","arxiv":1,"extern":"1","oa":1,"type":"conference","article_number":"5995486","date_created":"2024-10-15T11:20:54Z","date_updated":"2024-12-05T14:15:22Z","month":"08"}