--- _id: '1865' abstract: - lang: eng text: The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during embryonic shoot and root specification, the role of the auxin influx carriers AUX1 and LIKE-AUX1 (LAX) proteins is not well established. Here, we used chemical and genetic tools on Brassica napus microspore-derived embryos and Arabidopsis thaliana zygotic embryos, and demonstrate that AUX1, LAX1 and LAX2 are required for both shoot and root pole formation, in concert with PIN efflux carriers. Furthermore, we uncovered a positive-feedback loop betweenMONOPTEROS(ARF5)-dependent auxin signalling and auxin transport. ThisMONOPTEROSdependent transcriptional regulation of auxin influx (AUX1, LAX1 and LAX2) and auxin efflux (PIN1 and PIN4) carriers by MONOPTEROS helps to maintain proper auxin transport to the root tip. These results indicate that auxin-dependent cell specification during embryo development requires balanced auxin transport involving both influx and efflux mechanisms, and that this transport is maintained by a positive transcriptional feedback on auxin signalling. acknowledgement: W.G. is a post-doctoral fellow of the Research Foundation Flanders. H.S.R. is supported by Employment of Best Young Scientists for International Cooperation Empowerment [CZ.1.07/2.3.00/30.0037], co-financed by the European Social Fund and the state budget of the Czech Republic. Mi.S. was funded by the Ramón y Cajal program. This work was supported by the European Research Council [project ERC-2011-StG-20101109-PSDP], project ‘CEITEC – Central European Institute of Technology’ [CZ.1.05/1.1.00/02.0068], the European Social Fund [CZ.1.07/2.3.00/20.0043] and the Czech Science Foundation GACR [GA13-40637S] to J.F. We acknowledge funding from the Biological and Biotechnological Science Research Council (BBSRC) and Engineering Physics Science Research Council (EPSRC) to R.S. and M.B author: - first_name: Hélène full_name: Robert, Hélène last_name: Robert - first_name: Wim full_name: Grunewald, Wim last_name: Grunewald - first_name: Michael full_name: Sauer, Michael last_name: Sauer - first_name: Bernard full_name: Cannoot, Bernard last_name: Cannoot - first_name: Mercedes full_name: Soriano, Mercedes last_name: Soriano - first_name: Ranjan full_name: Swarup, Ranjan last_name: Swarup - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers - first_name: Malcolm full_name: Bennett, Malcolm last_name: Bennett - first_name: Kim full_name: Boutilier, Kim last_name: Boutilier - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Robert H, Grunewald W, Sauer M, et al. Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development. 2015;142(4):702-711. doi:10.1242/dev.115832 apa: Robert, H., Grunewald, W., Sauer, M., Cannoot, B., Soriano, M., Swarup, R., … Friml, J. (2015). Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development. Company of Biologists. https://doi.org/10.1242/dev.115832 chicago: Robert, Hélène, Wim Grunewald, Michael Sauer, Bernard Cannoot, Mercedes Soriano, Ranjan Swarup, Dolf Weijers, Malcolm Bennett, Kim Boutilier, and Jiří Friml. “Plant Embryogenesis Requires AUX/LAX-Mediated Auxin Influx.” Development. Company of Biologists, 2015. https://doi.org/10.1242/dev.115832. ieee: H. Robert et al., “Plant embryogenesis requires AUX/LAX-mediated auxin influx,” Development, vol. 142, no. 4. Company of Biologists, pp. 702–711, 2015. ista: Robert H, Grunewald W, Sauer M, Cannoot B, Soriano M, Swarup R, Weijers D, Bennett M, Boutilier K, Friml J. 2015. Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development. 142(4), 702–711. mla: Robert, Hélène, et al. “Plant Embryogenesis Requires AUX/LAX-Mediated Auxin Influx.” Development, vol. 142, no. 4, Company of Biologists, 2015, pp. 702–11, doi:10.1242/dev.115832. short: H. Robert, W. Grunewald, M. Sauer, B. Cannoot, M. Soriano, R. Swarup, D. Weijers, M. Bennett, K. Boutilier, J. Friml, Development 142 (2015) 702–711. date_created: 2018-12-11T11:54:26Z date_published: 2015-02-15T00:00:00Z date_updated: 2021-01-12T06:53:43Z day: '15' department: - _id: JiFr doi: 10.1242/dev.115832 ec_funded: 1 intvolume: ' 142' issue: '4' language: - iso: eng month: '02' oa_version: None page: 702 - 711 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Development publication_status: published publisher: Company of Biologists publist_id: '5231' quality_controlled: '1' scopus_import: 1 status: public title: Plant embryogenesis requires AUX/LAX-mediated auxin influx type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 142 year: '2015' ...