{"publisher":"Springer Nature","arxiv":1,"status":"public","year":"2024","day":"17","doi":"10.1007/s00023-024-01518-y","date_created":"2025-01-05T23:01:59Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","scopus_import":"1","publication_status":"epub_ahead","related_material":{"record":[{"id":"17174","status":"public","relation":"earlier_version"}]},"corr_author":"1","department":[{"_id":"LaEr"}],"OA_type":"hybrid","title":"Prethermalization for deformed Wigner matrices","language":[{"iso":"eng"}],"OA_place":"publisher","tmp":{"name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","image":"/images/cc_by.png"},"type":"journal_article","_id":"18764","author":[{"id":"4DBD5372-F248-11E8-B48F-1D18A9856A87","last_name":"Erdös","first_name":"László","full_name":"Erdös, László","orcid":"0000-0001-5366-9603"},{"first_name":"Sven Joscha","full_name":"Henheik, Sven Joscha","orcid":"0000-0003-1106-327X","id":"31d731d7-d235-11ea-ad11-b50331c8d7fb","last_name":"Henheik"},{"first_name":"Jana","full_name":"Reker, Jana","id":"e796e4f9-dc8d-11ea-abe3-97e26a0323e9","last_name":"Reker"},{"full_name":"Riabov, Volodymyr","first_name":"Volodymyr","id":"1949f904-edfb-11eb-afb5-e2dfddabb93b","last_name":"Riabov"}],"article_processing_charge":"Yes (via OA deal)","quality_controlled":"1","date_updated":"2025-01-08T07:55:37Z","date_published":"2024-12-17T00:00:00Z","ddc":["510"],"acknowledgement":"We thank Peter Reimann and Lennart Dabelow for helpful comments. Open access funding provided by Institute of Science and Technology (IST Austria).","license":"https://creativecommons.org/licenses/by/4.0/","has_accepted_license":"1","abstract":[{"text":"We prove that a class of weakly perturbed Hamiltonians of the form H_λ= H_0 + λW, with W being a Wigner matrix, exhibits prethermalization. That is, the time evolution generated by H_λ relaxes to its ultimate thermal state via an intermediate prethermal state with a lifetime of order λ^{-2}. Moreover, we obtain a general relaxation formula, expressing the perturbed dynamics via the unperturbed dynamics and the ultimate thermal state. The proof relies on a two-resolvent law for the deformed Wigner matrix H_λ.","lang":"eng"}],"oa_version":"Published Version","publication_identifier":{"issn":["1424-0637"]},"external_id":{"arxiv":["2310.06677"]},"publication":"Annales Henri Poincare","citation":{"ista":"Erdös L, Henheik SJ, Reker J, Riabov V. 2024. Prethermalization for deformed Wigner matrices. Annales Henri Poincare.","short":"L. Erdös, S.J. Henheik, J. Reker, V. Riabov, Annales Henri Poincare (2024).","ieee":"L. Erdös, S. J. Henheik, J. Reker, and V. Riabov, “Prethermalization for deformed Wigner matrices,” Annales Henri Poincare. Springer Nature, 2024.","apa":"Erdös, L., Henheik, S. J., Reker, J., & Riabov, V. (2024). Prethermalization for deformed Wigner matrices. Annales Henri Poincare. Springer Nature. https://doi.org/10.1007/s00023-024-01518-y","ama":"Erdös L, Henheik SJ, Reker J, Riabov V. Prethermalization for deformed Wigner matrices. Annales Henri Poincare. 2024. doi:10.1007/s00023-024-01518-y","chicago":"Erdös, László, Sven Joscha Henheik, Jana Reker, and Volodymyr Riabov. “Prethermalization for Deformed Wigner Matrices.” Annales Henri Poincare. Springer Nature, 2024. https://doi.org/10.1007/s00023-024-01518-y.","mla":"Erdös, László, et al. “Prethermalization for Deformed Wigner Matrices.” Annales Henri Poincare, Springer Nature, 2024, doi:10.1007/s00023-024-01518-y."},"article_type":"original","month":"12"}