{"volume":279,"scopus_import":"1","article_type":"original","OA_place":"publisher","oa_version":"Published Version","OA_type":"hybrid","corr_author":"1","publication_identifier":{"issn":["0022-314X"]},"date_published":"2026-07-23T00:00:00Z","publication":"Journal of Number Theory","date_updated":"2025-07-31T08:25:00Z","PlanS_conform":"1","title":"Divisibility sequences related to abelian varieties isogenous to a power of an elliptic curve","department":[{"_id":"TiBr"}],"citation":{"chicago":"Barańczuk, Stefan, Bartosz Naskręcki, and Matteo Verzobio. “Divisibility Sequences Related to Abelian Varieties Isogenous to a Power of an Elliptic Curve.” Journal of Number Theory. Elsevier, 2026. https://doi.org/10.1016/j.jnt.2025.06.001.","mla":"Barańczuk, Stefan, et al. “Divisibility Sequences Related to Abelian Varieties Isogenous to a Power of an Elliptic Curve.” Journal of Number Theory, vol. 279, Elsevier, 2026, pp. 170–83, doi:10.1016/j.jnt.2025.06.001.","ista":"Barańczuk S, Naskręcki B, Verzobio M. 2026. Divisibility sequences related to abelian varieties isogenous to a power of an elliptic curve. Journal of Number Theory. 279, 170–183.","ama":"Barańczuk S, Naskręcki B, Verzobio M. Divisibility sequences related to abelian varieties isogenous to a power of an elliptic curve. Journal of Number Theory. 2026;279:170-183. doi:10.1016/j.jnt.2025.06.001","short":"S. Barańczuk, B. Naskręcki, M. Verzobio, Journal of Number Theory 279 (2026) 170–183.","ieee":"S. Barańczuk, B. Naskręcki, and M. Verzobio, “Divisibility sequences related to abelian varieties isogenous to a power of an elliptic curve,” Journal of Number Theory, vol. 279. Elsevier, pp. 170–183, 2026.","apa":"Barańczuk, S., Naskręcki, B., & Verzobio, M. (2026). Divisibility sequences related to abelian varieties isogenous to a power of an elliptic curve. Journal of Number Theory. Elsevier. https://doi.org/10.1016/j.jnt.2025.06.001"},"abstract":[{"lang":"eng","text":"Let A be an abelian variety defined over a number field K, E/K be an elliptic curve, and ϕ : A → Em be an isogeny defined over K. Let P ∈ A(K) be such that ϕ(P)=(Q1,..., Qm) with RankZ(⟨Q1,...,Qm⟩)=1. We will study a divisibility sequence related to the point P and show its relation with elliptic divisibility sequences."}],"user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","oa":1,"month":"07","date_created":"2025-07-27T22:01:25Z","page":"170-183","article_processing_charge":"Yes (via OA deal)","status":"public","year":"2026","author":[{"last_name":"Barańczuk","full_name":"Barańczuk, Stefan","first_name":"Stefan"},{"first_name":"Bartosz","full_name":"Naskręcki, Bartosz","last_name":"Naskręcki"},{"orcid":"0000-0002-0854-0306","id":"7aa8f170-131e-11ed-88e1-a9efd01027cb","first_name":"Matteo","last_name":"Verzobio","full_name":"Verzobio, Matteo"}],"_id":"20078","main_file_link":[{"open_access":"1","url":"https://doi.org/10.1016/j.jnt.2025.06.001"}],"quality_controlled":"1","day":"23","arxiv":1,"doi":"10.1016/j.jnt.2025.06.001","publication_status":"epub_ahead","external_id":{"arxiv":["2309.09699"]},"publisher":"Elsevier","intvolume":" 279","type":"journal_article","language":[{"iso":"eng"}]}