{"file":[{"content_type":"application/pdf","checksum":"3566f3a8b0c1bc550e62914a88c584ff","file_name":"IST-2016-486-v1+1_s10208-014-9223-y.pdf","date_created":"2018-12-12T10:08:10Z","file_id":"4670","relation":"main_file","file_size":1317546,"date_updated":"2020-07-14T12:45:26Z","access_level":"open_access","creator":"system"}],"tmp":{"legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","image":"/images/cc_by.png","short":"CC BY (4.0)"},"date_published":"2015-10-01T00:00:00Z","oa_version":"Published Version","project":[{"grant_number":"318493","_id":"255D761E-B435-11E9-9278-68D0E5697425","call_identifier":"FP7","name":"Topological Complex Systems"}],"year":"2015","volume":15,"pubrep_id":"486","ddc":["000"],"type":"journal_article","language":[{"iso":"eng"}],"citation":{"mla":"Edelsbrunner, Herbert, et al. “The Persistent Homology of a Self-Map.” Foundations of Computational Mathematics, vol. 15, no. 5, Springer, 2015, pp. 1213–44, doi:10.1007/s10208-014-9223-y.","short":"H. Edelsbrunner, G. Jablonski, M. Mrozek, Foundations of Computational Mathematics 15 (2015) 1213–1244.","ama":"Edelsbrunner H, Jablonski G, Mrozek M. The persistent homology of a self-map. Foundations of Computational Mathematics. 2015;15(5):1213-1244. doi:10.1007/s10208-014-9223-y","ista":"Edelsbrunner H, Jablonski G, Mrozek M. 2015. The persistent homology of a self-map. Foundations of Computational Mathematics. 15(5), 1213–1244.","ieee":"H. Edelsbrunner, G. Jablonski, and M. Mrozek, “The persistent homology of a self-map,” Foundations of Computational Mathematics, vol. 15, no. 5. Springer, pp. 1213–1244, 2015.","chicago":"Edelsbrunner, Herbert, Grzegorz Jablonski, and Marian Mrozek. “The Persistent Homology of a Self-Map.” Foundations of Computational Mathematics. Springer, 2015. https://doi.org/10.1007/s10208-014-9223-y.","apa":"Edelsbrunner, H., Jablonski, G., & Mrozek, M. (2015). The persistent homology of a self-map. Foundations of Computational Mathematics. Springer. https://doi.org/10.1007/s10208-014-9223-y"},"publist_id":"5022","abstract":[{"lang":"eng","text":"Considering a continuous self-map and the induced endomorphism on homology, we study the eigenvalues and eigenspaces of the latter. Taking a filtration of representations, we define the persistence of the eigenspaces, effectively introducing a hierarchical organization of the map. The algorithm that computes this information for a finite sample is proved to be stable, and to give the correct answer for a sufficiently dense sample. Results computed with an implementation of the algorithm provide evidence of its practical utility.\r\n"}],"has_accepted_license":"1","scopus_import":1,"ec_funded":1,"status":"public","day":"01","publication":"Foundations of Computational Mathematics","date_updated":"2021-01-12T06:54:53Z","publisher":"Springer","intvolume":" 15","acknowledgement":"This research is partially supported by the Toposys project FP7-ICT-318493-STREP, by ESF under the ACAT Research Network Programme, by the Russian Government under mega project 11.G34.31.0053, and by the Polish National Science Center under Grant No. N201 419639.","quality_controlled":"1","_id":"2035","file_date_updated":"2020-07-14T12:45:26Z","author":[{"first_name":"Herbert","full_name":"Edelsbrunner, Herbert","last_name":"Edelsbrunner","orcid":"0000-0002-9823-6833","id":"3FB178DA-F248-11E8-B48F-1D18A9856A87"},{"orcid":"0000-0002-3536-9866","id":"4483EF78-F248-11E8-B48F-1D18A9856A87","last_name":"Jablonski","full_name":"Jablonski, Grzegorz","first_name":"Grzegorz"},{"full_name":"Mrozek, Marian","last_name":"Mrozek","first_name":"Marian"}],"oa":1,"issue":"5","date_created":"2018-12-11T11:55:20Z","page":"1213 - 1244","doi":"10.1007/s10208-014-9223-y","department":[{"_id":"HeEd"}],"publication_status":"published","month":"10","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","title":"The persistent homology of a self-map"}