{"publication":"arXiv","doi":"10.48550/arXiv.2408.12924","_id":"20570","related_material":{"record":[{"relation":"dissertation_contains","id":"20563","status":"for_moderation"}]},"project":[{"grant_number":"F06504","_id":"260482E2-B435-11E9-9278-68D0E5697425","name":"Taming Complexity in Partial Differential Systems","call_identifier":"FWF"}],"date_created":"2025-10-28T13:12:22Z","OA_type":"green","article_processing_charge":"No","language":[{"iso":"eng"}],"year":"2024","arxiv":1,"day":"23","article_number":"2408.12924","main_file_link":[{"url":"https://doi.org/10.48550/arXiv.2408.12924","open_access":"1"}],"oa_version":"Preprint","date_updated":"2025-11-25T15:27:46Z","acknowledgement":"The author is thankful to Nicolas Clozeau, Lorenzo Dello Schiavo, Jan Maas, Dejan Slepčev,\r\nand Dario Trevisan for many fruitful discussions and comments. The author gratefully acknowledges support from the Austrian Science Fund (FWF) project 10.55776/F65.","citation":{"apa":"Quattrocchi, F. (n.d.). Asymptotics for optimal empirical quantization of measures. arXiv. https://doi.org/10.48550/arXiv.2408.12924","mla":"Quattrocchi, Filippo. “Asymptotics for Optimal Empirical Quantization of Measures.” ArXiv, 2408.12924, doi:10.48550/arXiv.2408.12924.","short":"F. Quattrocchi, ArXiv (n.d.).","chicago":"Quattrocchi, Filippo. “Asymptotics for Optimal Empirical Quantization of Measures.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2408.12924.","ama":"Quattrocchi F. Asymptotics for optimal empirical quantization of measures. arXiv. doi:10.48550/arXiv.2408.12924","ieee":"F. Quattrocchi, “Asymptotics for optimal empirical quantization of measures,” arXiv. .","ista":"Quattrocchi F. Asymptotics for optimal empirical quantization of measures. arXiv, 2408.12924."},"author":[{"first_name":"Filippo","orcid":"0009-0000-9773-1931","last_name":"Quattrocchi","full_name":"Quattrocchi, Filippo","id":"3ebd6ba8-edfb-11eb-afb5-91a9745ba308"}],"abstract":[{"text":"We investigate the minimal error in approximating a general probability\r\nmeasure $\\mu$ on $\\mathbb{R}^d$ by the uniform measure on a finite set with\r\nprescribed cardinality $n$. The error is measured in the $p$-Wasserstein\r\ndistance. In particular, when $1\\le p