TY - JOUR AB - We propose a technique for engineering momentum-dependent dissipation in Bose-Einstein condensates with non-local interactions. The scheme relies on the use of momentum-dependent dark-states in close analogy to velocity-selective coherent population trapping. During the short-time dissipative dynamics, the system is driven into a particular finite-momentum phonon mode, which in real space corresponds to an ordered structure with non-local density-density correlations. Dissipation-induced ordering can be observed and studied in present-day experiments using cold atoms with dipole-dipole or off-resonant Rydberg interactions. Due to its dissipative nature, the ordering does not require artificial breaking of translational symmetry by an opticallattice or harmonic trap. This opens up a perspective of direct cooling of quantum gases into strongly-interacting phases. AU - Otterbach, Johannes AU - Lemeshko, Mikhail ID - 2140 IS - 7 JF - Physical Review Letters TI - Dissipative preparation of spatial order in Rydberg-dressed Bose-Einstein condensates VL - 113 ER -