The Altshuler-Shklovskii formulas for random band matrices I: the unimodular case
Erdös, László
Knowles, Antti
We consider the spectral statistics of large random band matrices on mesoscopic energy scales. We show that the correlation function of the local eigenvalue density exhibits a universal power law behaviour that differs from the Wigner-Dyson- Mehta statistics. This law had been predicted in the physics literature by Altshuler and Shklovskii in (Zh Eksp Teor Fiz (Sov Phys JETP) 91(64):220(127), 1986); it describes the correlations of the eigenvalue density in general metallic sampleswith weak disorder. Our result rigorously establishes the Altshuler-Shklovskii formulas for band matrices. In two dimensions, where the leading term vanishes owing to an algebraic cancellation, we identify the first non-vanishing term and show that it differs substantially from the prediction of Kravtsov and Lerner in (Phys Rev Lett 74:2563-2566, 1995). The proof is given in the current paper and its companion (Ann. H. Poincaré. arXiv:1309.5107, 2014).
Springer
2015
info:eu-repo/semantics/article
doc-type:article
text
http://purl.org/coar/resource_type/c_6501
https://research-explorer.ista.ac.at/record/2166
Erdös L, Knowles A. The Altshuler-Shklovskii formulas for random band matrices I: the unimodular case. <i>Communications in Mathematical Physics</i>. 2015;333(3):1365-1416. doi:<a href="https://doi.org/10.1007/s00220-014-2119-5">10.1007/s00220-014-2119-5</a>
eng
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00220-014-2119-5
info:eu-repo/semantics/openAccess