TY - JOUR
AB - We give the leading order semiclassical asymptotics for the sum of the negative eigenvalues of the Pauli operator (in dimension two and three) with a strong non-homogeneous magnetic field. As in [LSY-II] for homogeneous field, this result can be used to prove that the magnetic Thomas-Fermi theory gives the leading order ground state energy of large atoms. We develop a new localization scheme well suited to the anisotropic character of the strong magnetic field. We also use the basic Lieb-Thirring estimate obtained in our companion paper [ES-I].
AU - Erdös, László
AU - Solovej, Jan
ID - 2729
IS - 3
JF - Communications in Mathematical Physics
SN - 0010-3616
TI - Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields, II. Leading order asymptotic estimates
VL - 188
ER -