{"author":[{"last_name":"Van Cauter","first_name":"Tiffany","full_name":"Van Cauter, Tiffany"},{"last_name":"Camon","first_name":"Jeremy","full_name":"Camon, Jeremy"},{"id":"467FB3D4-F248-11E8-B48F-1D18A9856A87","first_name":"Alice","full_name":"Alvernhe, Alice","last_name":"Alvernhe"},{"first_name":"Coralie","full_name":"Elduayen, Coralie","last_name":"Elduayen"},{"full_name":"Sargolini, Francesca","first_name":"Francesca","last_name":"Sargolini"},{"last_name":"Save","first_name":"Étienne","full_name":"Save, Étienne"}],"language":[{"iso":"eng"}],"date_created":"2018-12-11T11:59:52Z","year":"2013","abstract":[{"text":"It is known that the entorhinal cortex plays a crucial role in spatial cognition in rodents. Neuroanatomical and electrophysiological data suggest that there is a functional distinction between 2 subregions within the entorhinal cortex, the medial entorhinal cortex (MEC), and the lateral entorhinal cortex (LEC). Rats with MEC or LEC lesions were trained in 2 navigation tasks requiring allothetic (water maze task) or idiothetic (path integration) information processing and 2-object exploration tasks allowing testing of spatial and nonspatial processing of intramaze objects. MEC lesions mildly affected place navigation in the water maze and produced a path integration deficit. They also altered the processing of spatial information in both exploration tasks while sparing the processing of nonspatial information. LEC lesions did not affect navigation abilities in both the water maze and the path integration tasks. They altered spatial and nonspatial processing in the object exploration task but not in the one-trial recognition task. Overall, these results indicate that the MEC is important for spatial processing and path integration. The LEC has some influence on both spatial and nonspatial processes, suggesting that the 2 kinds of information interact at the level of the EC.","lang":"eng"}],"page":"451 - 459","status":"public","volume":23,"doi":"10.1093/cercor/bhs033","intvolume":" 23","quality_controlled":"1","date_published":"2013-02-01T00:00:00Z","title":"Distinct roles of medial and lateral entorhinal cortex in spatial cognition","scopus_import":1,"user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","citation":{"ama":"Van Cauter T, Camon J, Alvernhe A, Elduayen C, Sargolini F, Save É. Distinct roles of medial and lateral entorhinal cortex in spatial cognition. Cerebral Cortex. 2013;23(2):451-459. doi:10.1093/cercor/bhs033","ieee":"T. Van Cauter, J. Camon, A. Alvernhe, C. Elduayen, F. Sargolini, and É. Save, “Distinct roles of medial and lateral entorhinal cortex in spatial cognition,” Cerebral Cortex, vol. 23, no. 2. Oxford University Press, pp. 451–459, 2013.","mla":"Van Cauter, Tiffany, et al. “Distinct Roles of Medial and Lateral Entorhinal Cortex in Spatial Cognition.” Cerebral Cortex, vol. 23, no. 2, Oxford University Press, 2013, pp. 451–59, doi:10.1093/cercor/bhs033.","short":"T. Van Cauter, J. Camon, A. Alvernhe, C. Elduayen, F. Sargolini, É. Save, Cerebral Cortex 23 (2013) 451–459.","ista":"Van Cauter T, Camon J, Alvernhe A, Elduayen C, Sargolini F, Save É. 2013. Distinct roles of medial and lateral entorhinal cortex in spatial cognition. Cerebral Cortex. 23(2), 451–459.","chicago":"Van Cauter, Tiffany, Jeremy Camon, Alice Alvernhe, Coralie Elduayen, Francesca Sargolini, and Étienne Save. “Distinct Roles of Medial and Lateral Entorhinal Cortex in Spatial Cognition.” Cerebral Cortex. Oxford University Press, 2013. https://doi.org/10.1093/cercor/bhs033.","apa":"Van Cauter, T., Camon, J., Alvernhe, A., Elduayen, C., Sargolini, F., & Save, É. (2013). Distinct roles of medial and lateral entorhinal cortex in spatial cognition. Cerebral Cortex. Oxford University Press. https://doi.org/10.1093/cercor/bhs033"},"publisher":"Oxford University Press","oa_version":"None","type":"journal_article","_id":"2840","issue":"2","date_updated":"2021-01-12T07:00:08Z","department":[{"_id":"JoCs"}],"publication":"Cerebral Cortex","publication_status":"published","publist_id":"3958","day":"01","month":"02"}