TY - JOUR
AB - Recent work emphasizes that the maximum entropy principle provides a bridge between statistical mechanics models for collective behavior in neural networks and experiments on networks of real neurons. Most of this work has focused on capturing the measured correlations among pairs of neurons. Here we suggest an alternative, constructing models that are consistent with the distribution of global network activity, i.e. the probability that K out of N cells in the network generate action potentials in the same small time bin. The inverse problem that we need to solve in constructing the model is analytically tractable, and provides a natural 'thermodynamics' for the network in the limit of large N. We analyze the responses of neurons in a small patch of the retina to naturalistic stimuli, and find that the implied thermodynamics is very close to an unusual critical point, in which the entropy (in proper units) is exactly equal to the energy. © 2013 IOP Publishing Ltd and SISSA Medialab srl.
AU - Tkacik, Gasper
AU - Marre, Olivier
AU - Mora, Thierry
AU - Amodei, Dario
AU - Berry, Michael
AU - Bialek, William
ID - 2850
IS - 3
JF - Journal of Statistical Mechanics Theory and Experiment
TI - The simplest maximum entropy model for collective behavior in a neural network
VL - 2013
ER -