{"_id":"2916","author":[{"last_name":"Cerny","full_name":"Cerny, Pavol","id":"4DCBEFFE-F248-11E8-B48F-1D18A9856A87","first_name":"Pavol"},{"full_name":"Chmelik, Martin","last_name":"Chmelik","id":"3624234E-F248-11E8-B48F-1D18A9856A87","first_name":"Martin"},{"id":"40876CD8-F248-11E8-B48F-1D18A9856A87","orcid":"0000−0002−2985−7724","first_name":"Thomas A","last_name":"Henzinger","full_name":"Henzinger, Thomas A"},{"last_name":"Radhakrishna","full_name":"Radhakrishna, Arjun","id":"3B51CAC4-F248-11E8-B48F-1D18A9856A87","first_name":"Arjun"}],"title":"Interface Simulation Distances","oa":1,"date_published":"2012-10-07T00:00:00Z","intvolume":" 96","month":"10","conference":{"location":"Napoli, Italy","start_date":"2012-09-06","name":"GandALF: Games, Automata, Logic, and Formal Verification","end_date":"2012-09-08"},"external_id":{"arxiv":["1210.2450"]},"user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","ec_funded":1,"date_updated":"2023-02-23T10:12:05Z","quality_controlled":"1","project":[{"_id":"25EE3708-B435-11E9-9278-68D0E5697425","name":"Quantitative Reactive Modeling","grant_number":"267989","call_identifier":"FP7"},{"_id":"25832EC2-B435-11E9-9278-68D0E5697425","name":"Rigorous Systems Engineering","grant_number":"S 11407_N23","call_identifier":"FWF"},{"call_identifier":"FWF","name":"Modern Graph Algorithmic Techniques in Formal Verification","_id":"2584A770-B435-11E9-9278-68D0E5697425","grant_number":"P 23499-N23"},{"call_identifier":"FP7","_id":"2581B60A-B435-11E9-9278-68D0E5697425","name":"Quantitative Graph Games: Theory and Applications","grant_number":"279307"},{"name":"Microsoft Research Faculty Fellowship","_id":"2587B514-B435-11E9-9278-68D0E5697425"}],"language":[{"iso":"eng"}],"status":"public","page":"29 - 42","volume":96,"main_file_link":[{"url":"http://arxiv.org/abs/1210.2450","open_access":"1"}],"publisher":"EPTCS","publication_status":"published","scopus_import":1,"type":"conference","oa_version":"Submitted Version","day":"07","related_material":{"record":[{"id":"1733","status":"public","relation":"later_version"}]},"publist_id":"3827","publication":"Electronic Proceedings in Theoretical Computer Science","date_created":"2018-12-11T12:00:19Z","citation":{"short":"P. Cerny, M. Chmelik, T.A. Henzinger, A. Radhakrishna, in:, Electronic Proceedings in Theoretical Computer Science, EPTCS, 2012, pp. 29–42.","ista":"Cerny P, Chmelik M, Henzinger TA, Radhakrishna A. 2012. Interface Simulation Distances. Electronic Proceedings in Theoretical Computer Science. GandALF: Games, Automata, Logic, and Formal Verification vol. 96, 29–42.","mla":"Cerny, Pavol, et al. “Interface Simulation Distances.” Electronic Proceedings in Theoretical Computer Science, vol. 96, EPTCS, 2012, pp. 29–42, doi:10.4204/EPTCS.96.3.","chicago":"Cerny, Pavol, Martin Chmelik, Thomas A Henzinger, and Arjun Radhakrishna. “Interface Simulation Distances.” In Electronic Proceedings in Theoretical Computer Science, 96:29–42. EPTCS, 2012. https://doi.org/10.4204/EPTCS.96.3.","apa":"Cerny, P., Chmelik, M., Henzinger, T. A., & Radhakrishna, A. (2012). Interface Simulation Distances. In Electronic Proceedings in Theoretical Computer Science (Vol. 96, pp. 29–42). Napoli, Italy: EPTCS. https://doi.org/10.4204/EPTCS.96.3","ieee":"P. Cerny, M. Chmelik, T. A. Henzinger, and A. Radhakrishna, “Interface Simulation Distances,” in Electronic Proceedings in Theoretical Computer Science, Napoli, Italy, 2012, vol. 96, pp. 29–42.","ama":"Cerny P, Chmelik M, Henzinger TA, Radhakrishna A. Interface Simulation Distances. In: Electronic Proceedings in Theoretical Computer Science. Vol 96. EPTCS; 2012:29-42. doi:10.4204/EPTCS.96.3"},"abstract":[{"lang":"eng","text":"The classical (boolean) notion of refinement for behavioral interfaces of system components is the alternating refinement preorder. In this paper, we define a quantitative measure for interfaces, called interface simulation distance. It makes the alternating refinement preorder quantitative by, intu- itively, tolerating errors (while counting them) in the alternating simulation game. We show that the interface simulation distance satisfies the triangle inequality, that the distance between two interfaces does not increase under parallel composition with a third interface, and that the distance between two interfaces can be bounded from above and below by distances between abstractions of the two interfaces. We illustrate the framework, and the properties of the distances under composition of interfaces, with two case studies."}],"doi":"10.4204/EPTCS.96.3","department":[{"_id":"ToHe"},{"_id":"KrCh"}],"year":"2012"}