{"date_created":"2018-12-11T11:45:46Z","citation":{"chicago":"Edelsbrunner, Herbert, and Mabel Iglesias Ham. “On the Optimality of the FCC Lattice for Soft Sphere Packing.” SIAM J Discrete Math. Society for Industrial and Applied Mathematics , 2018. https://doi.org/10.1137/16M1097201.","apa":"Edelsbrunner, H., & Iglesias Ham, M. (2018). On the optimality of the FCC lattice for soft sphere packing. SIAM J Discrete Math. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/16M1097201","ieee":"H. Edelsbrunner and M. Iglesias Ham, “On the optimality of the FCC lattice for soft sphere packing,” SIAM J Discrete Math, vol. 32, no. 1. Society for Industrial and Applied Mathematics , pp. 750–782, 2018.","ama":"Edelsbrunner H, Iglesias Ham M. On the optimality of the FCC lattice for soft sphere packing. SIAM J Discrete Math. 2018;32(1):750-782. doi:10.1137/16M1097201","ista":"Edelsbrunner H, Iglesias Ham M. 2018. On the optimality of the FCC lattice for soft sphere packing. SIAM J Discrete Math. 32(1), 750–782.","short":"H. Edelsbrunner, M. Iglesias Ham, SIAM J Discrete Math 32 (2018) 750–782.","mla":"Edelsbrunner, Herbert, and Mabel Iglesias Ham. “On the Optimality of the FCC Lattice for Soft Sphere Packing.” SIAM J Discrete Math, vol. 32, no. 1, Society for Industrial and Applied Mathematics , 2018, pp. 750–82, doi:10.1137/16M1097201."},"type":"journal_article","title":"On the optimality of the FCC lattice for soft sphere packing","month":"03","date_updated":"2023-09-13T09:34:38Z","acknowledgement":"This work was partially supported by the DFG Collaborative Research Center TRR 109, “Discretization in Geometry and Dynamics,” through grant I02979-N35 of the Austrian Science Fund (FWF).","isi":1,"article_processing_charge":"No","scopus_import":"1","publisher":"Society for Industrial and Applied Mathematics ","issue":"1","year":"2018","abstract":[{"lang":"eng","text":"Motivated by biological questions, we study configurations of equal spheres that neither pack nor cover. Placing their centers on a lattice, we define the soft density of the configuration by penalizing multiple overlaps. Considering the 1-parameter family of diagonally distorted 3-dimensional integer lattices, we show that the soft density is maximized at the FCC lattice."}],"publication_identifier":{"issn":["08954801"]},"oa_version":"Submitted Version","department":[{"_id":"HeEd"}],"article_type":"original","status":"public","date_published":"2018-03-29T00:00:00Z","publication":"SIAM J Discrete Math","day":"29","publication_status":"published","doi":"10.1137/16M1097201","author":[{"first_name":"Herbert","id":"3FB178DA-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-9823-6833","last_name":"Edelsbrunner","full_name":"Edelsbrunner, Herbert"},{"last_name":"Iglesias Ham","full_name":"Iglesias Ham, Mabel","id":"41B58C0C-F248-11E8-B48F-1D18A9856A87","first_name":"Mabel"}],"volume":32,"_id":"312","external_id":{"isi":["000428958900038"]},"project":[{"name":"Persistence and stability of geometric complexes","_id":"2561EBF4-B435-11E9-9278-68D0E5697425","call_identifier":"FWF","grant_number":"I02979-N35"}],"intvolume":" 32","quality_controlled":"1","language":[{"iso":"eng"}],"publist_id":"7553","oa":1,"main_file_link":[{"url":"http://pdfs.semanticscholar.org/d2d5/6da00fbc674e6a8b1bb9d857167e54200dc6.pdf","open_access":"1"}],"page":"750 - 782","user_id":"c635000d-4b10-11ee-a964-aac5a93f6ac1"}