{"citation":{"apa":"Green, R., Malaspinas, A., Krause, J., Briggs, A., Johnson, P., Uhler, C., … Pääbo, S. (2008). A complete neandertal mitochondrial genome sequence determined by highhhroughput sequencing. Cell. Cell Press. https://doi.org/10.1016/j.cell.2008.06.021","chicago":"Green, Richard, Anna Malaspinas, Johannes Krause, Adrian Briggs, Philip Johnson, Caroline Uhler, Matthias Meyer, et al. “A Complete Neandertal Mitochondrial Genome Sequence Determined by Highhhroughput Sequencing.” Cell. Cell Press, 2008. https://doi.org/10.1016/j.cell.2008.06.021.","ama":"Green R, Malaspinas A, Krause J, et al. A complete neandertal mitochondrial genome sequence determined by highhhroughput sequencing. Cell. 2008;134:416-426. doi:10.1016/j.cell.2008.06.021","ieee":"R. Green et al., “A complete neandertal mitochondrial genome sequence determined by highhhroughput sequencing,” Cell, vol. 134. Cell Press, pp. 416–426, 2008.","ista":"Green R, Malaspinas A, Krause J, Briggs A, Johnson P, Uhler C, Meyer M, Good J, Maricic T, Stenzel U, Prüfer K, Siebauer M, Burbano H, Ronan M, Rothberg J, Egholm M, Rudan P, Brajković D, Kućan Ž, Gušić I, Wikström M, Laakkonen L, Kelso J, Slatkin M, Pääbo S. 2008. A complete neandertal mitochondrial genome sequence determined by highhhroughput sequencing. Cell. 134, 416–426.","mla":"Green, Richard, et al. “A Complete Neandertal Mitochondrial Genome Sequence Determined by Highhhroughput Sequencing.” Cell, vol. 134, Cell Press, 2008, pp. 416–26, doi:10.1016/j.cell.2008.06.021.","short":"R. Green, A. Malaspinas, J. Krause, A. Briggs, P. Johnson, C. Uhler, M. Meyer, J. Good, T. Maricic, U. Stenzel, K. Prüfer, M. Siebauer, H. Burbano, M. Ronan, J. Rothberg, M. Egholm, P. Rudan, D. Brajković, Ž. Kućan, I. Gušić, M. Wikström, L. Laakkonen, J. Kelso, M. Slatkin, S. Pääbo, Cell 134 (2008) 416–426."},"publist_id":"3333","author":[{"first_name":"Richard","full_name":"Green, Richard E","last_name":"Green"},{"last_name":"Malaspinas","full_name":"Malaspinas, Anna-Sapfo ","first_name":"Anna"},{"last_name":"Krause","full_name":"Krause, Johannes","first_name":"Johannes"},{"full_name":"Briggs, Adrian W","last_name":"Briggs","first_name":"Adrian"},{"last_name":"Johnson","full_name":"Johnson, Philip L","first_name":"Philip"},{"orcid":"0000-0002-7008-0216","id":"49ADD78E-F248-11E8-B48F-1D18A9856A87","last_name":"Uhler","full_name":"Caroline Uhler","first_name":"Caroline"},{"last_name":"Meyer","full_name":"Meyer, Matthias","first_name":"Matthias"},{"first_name":"Jeffrey","last_name":"Good","full_name":"Good, Jeffrey M"},{"last_name":"Maricic","full_name":"Maricic, Tomislav","first_name":"Tomislav"},{"full_name":"Stenzel, Udo","last_name":"Stenzel","first_name":"Udo"},{"first_name":"Kay","full_name":"Prüfer, Kay","last_name":"Prüfer"},{"first_name":"Michael","last_name":"Siebauer","full_name":"Siebauer, Michael F"},{"first_name":"Hernän","full_name":"Burbano, Hernän A","last_name":"Burbano"},{"first_name":"Michael","full_name":"Ronan, Michael T","last_name":"Ronan"},{"full_name":"Rothberg, Jonathan M","last_name":"Rothberg","first_name":"Jonathan"},{"full_name":"Egholm, Michael","last_name":"Egholm","first_name":"Michael"},{"first_name":"Pavao","full_name":"Rudan, Pavao","last_name":"Rudan"},{"first_name":"Dejana","full_name":"Brajković, Dejana","last_name":"Brajković"},{"last_name":"Kućan","full_name":"Kućan, Željko","first_name":"Željko"},{"full_name":"Gušić, Ivan","last_name":"Gušić","first_name":"Ivan"},{"first_name":"Mårten","last_name":"Wikström","full_name":"Wikström, Mårten K"},{"full_name":"Laakkonen, Liisa J","last_name":"Laakkonen","first_name":"Liisa"},{"first_name":"Janet","full_name":"Kelso, Janet F","last_name":"Kelso"},{"last_name":"Slatkin","full_name":"Slatkin, Montgomery","first_name":"Montgomery"},{"first_name":"Svante","full_name":"Pääbo, Svante H","last_name":"Pääbo"}],"abstract":[{"text":"A complete mitochondrial (mt) genome sequence was reconstructed from a 38,000 year-old Neandertal individual with 8341 mtDNA sequences identified among 4.8 Gb of DNA generated from ∼0.3 g of bone. Analysis of the assembled sequence unequivocally establishes that the Neandertal mtDNA falls outside the variation of extant human mtDNAs, and allows an estimate of the divergence date between the two mtDNA lineages of 660,000 ± 140,000 years. Of the 13 proteins encoded in the mtDNA, subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain has experienced the largest number of amino acid substitutions in human ancestors since the separation from Neandertals. There is evidence that purifying selection in the Neandertal mtDNA was reduced compared with other primate lineages, suggesting that the effective population size of Neandertals was small.","lang":"eng"}],"type":"journal_article","_id":"3307","year":"2008","quality_controlled":0,"volume":134,"intvolume":" 134","date_published":"2008-08-01T00:00:00Z","extern":1,"month":"08","date_updated":"2021-01-12T07:42:32Z","publication":"Cell","publisher":"Cell Press","title":"A complete neandertal mitochondrial genome sequence determined by highhhroughput sequencing","doi":"10.1016/j.cell.2008.06.021","status":"public","page":"416 - 426","publication_status":"published","day":"01","main_file_link":[{"open_access":"1","url":"http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2602844/"}],"date_created":"2018-12-11T12:02:35Z","oa":1}