{"date_created":"2018-12-11T12:02:45Z","scopus_import":1,"conference":{"location":"San Francisco, USA","start_date":"2011-09-25","end_date":"2011-09-30","name":"IROS: RSJ International Conference on Intelligent Robots and Systems"},"department":[{"_id":"ChLa"}],"day":"01","publication_status":"published","page":"332 - 337","doi":"10.1109/IROS.2011.6094892","status":"public","title":"Learning anticipation policies for robot table tennis","publisher":"IEEE","date_updated":"2021-01-12T07:42:45Z","user_id":"4435EBFC-F248-11E8-B48F-1D18A9856A87","month":"01","oa_version":"None","date_published":"2011-01-01T00:00:00Z","quality_controlled":"1","year":"2011","_id":"3337","type":"conference","language":[{"iso":"eng"}],"abstract":[{"text":"Playing table tennis is a difficult task for robots, especially due to their limitations of acceleration. A key bottleneck is the amount of time needed to reach the desired hitting position and velocity of the racket for returning the incoming ball. Here, it often does not suffice to simply extrapolate the ball's trajectory after the opponent returns it but more information is needed. Humans are able to predict the ball's trajectory based on the opponent's moves and, thus, have a considerable advantage. Hence, we propose to incorporate an anticipation system into robot table tennis players, which enables the robot to react earlier while the opponent is performing the striking movement. Based on visual observation of the opponent's racket movement, the robot can predict the aim of the opponent and adjust its movement generation accordingly. The policies for deciding how and when to react are obtained by reinforcement learning. We conduct experiments with an existing robot player to show that the learned reaction policy can significantly improve the performance of the overall system.","lang":"eng"}],"author":[{"last_name":"Wang","full_name":"Wang, Zhikun","first_name":"Zhikun"},{"id":"40C20FD2-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0001-8622-7887","last_name":"Lampert","full_name":"Lampert, Christoph","first_name":"Christoph"},{"first_name":"Katharina","full_name":"Mülling, Katharina","last_name":"Mülling"},{"first_name":"Bernhard","last_name":"Schölkopf","full_name":"Schölkopf, Bernhard"},{"full_name":"Peters, Jan","last_name":"Peters","first_name":"Jan"}],"publist_id":"3293","citation":{"ista":"Wang Z, Lampert C, Mülling K, Schölkopf B, Peters J. 2011. Learning anticipation policies for robot table tennis. IROS: RSJ International Conference on Intelligent Robots and Systems, 332–337.","ieee":"Z. Wang, C. Lampert, K. Mülling, B. Schölkopf, and J. Peters, “Learning anticipation policies for robot table tennis,” presented at the IROS: RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, 2011, pp. 332–337.","ama":"Wang Z, Lampert C, Mülling K, Schölkopf B, Peters J. Learning anticipation policies for robot table tennis. In: IEEE; 2011:332-337. doi:10.1109/IROS.2011.6094892","mla":"Wang, Zhikun, et al. Learning Anticipation Policies for Robot Table Tennis. IEEE, 2011, pp. 332–37, doi:10.1109/IROS.2011.6094892.","short":"Z. Wang, C. Lampert, K. Mülling, B. Schölkopf, J. Peters, in:, IEEE, 2011, pp. 332–337.","apa":"Wang, Z., Lampert, C., Mülling, K., Schölkopf, B., & Peters, J. (2011). Learning anticipation policies for robot table tennis (pp. 332–337). Presented at the IROS: RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA: IEEE. https://doi.org/10.1109/IROS.2011.6094892","chicago":"Wang, Zhikun, Christoph Lampert, Katharina Mülling, Bernhard Schölkopf, and Jan Peters. “Learning Anticipation Policies for Robot Table Tennis,” 332–37. IEEE, 2011. https://doi.org/10.1109/IROS.2011.6094892."}}