{"oa_version":"None","day":"01","doi":"10.1007/978-3-642-15775-2_1","_id":"3848","date_updated":"2024-10-09T20:54:09Z","volume":6346,"year":"2010","status":"public","date_published":"2010-09-01T00:00:00Z","language":[{"iso":"eng"}],"page":"1 - 10","conference":{"name":"ESA: European Symposium on Algorithms","start_date":"2010-09-06","location":"Liverpool, UK","end_date":"2010-09-08"},"scopus_import":1,"user_id":"4435EBFC-F248-11E8-B48F-1D18A9856A87","publication_status":"published","date_created":"2018-12-11T12:05:30Z","corr_author":"1","title":"The robustness of level sets","intvolume":" 6346","citation":{"chicago":"Bendich, Paul, Herbert Edelsbrunner, Dmitriy Morozov, and Amit Patel. “The Robustness of Level Sets,” 6346:1–10. Springer, 2010. https://doi.org/10.1007/978-3-642-15775-2_1.","ama":"Bendich P, Edelsbrunner H, Morozov D, Patel A. The robustness of level sets. In: Vol 6346. Springer; 2010:1-10. doi:10.1007/978-3-642-15775-2_1","ista":"Bendich P, Edelsbrunner H, Morozov D, Patel A. 2010. The robustness of level sets. ESA: European Symposium on Algorithms, LNCS, vol. 6346, 1–10.","ieee":"P. Bendich, H. Edelsbrunner, D. Morozov, and A. Patel, “The robustness of level sets,” presented at the ESA: European Symposium on Algorithms, Liverpool, UK, 2010, vol. 6346, pp. 1–10.","apa":"Bendich, P., Edelsbrunner, H., Morozov, D., & Patel, A. (2010). The robustness of level sets (Vol. 6346, pp. 1–10). Presented at the ESA: European Symposium on Algorithms, Liverpool, UK: Springer. https://doi.org/10.1007/978-3-642-15775-2_1","mla":"Bendich, Paul, et al. The Robustness of Level Sets. Vol. 6346, Springer, 2010, pp. 1–10, doi:10.1007/978-3-642-15775-2_1.","short":"P. Bendich, H. Edelsbrunner, D. Morozov, A. Patel, in:, Springer, 2010, pp. 1–10."},"quality_controlled":"1","publisher":"Springer","department":[{"_id":"HeEd"}],"abstract":[{"text":"We define the robustness of a level set homology class of a function f:XR as the magnitude of a perturbation necessary to kill the class. Casting this notion into a group theoretic framework, we compute the robustness for each class, using a connection to extended persistent homology. The special case X=R3 has ramifications in medical imaging and scientific visualization.","lang":"eng"}],"author":[{"full_name":"Bendich, Paul","id":"43F6EC54-F248-11E8-B48F-1D18A9856A87","first_name":"Paul","last_name":"Bendich"},{"full_name":"Edelsbrunner, Herbert","orcid":"0000-0002-9823-6833","last_name":"Edelsbrunner","id":"3FB178DA-F248-11E8-B48F-1D18A9856A87","first_name":"Herbert"},{"full_name":"Morozov, Dmitriy","first_name":"Dmitriy","last_name":"Morozov"},{"full_name":"Patel, Amit","last_name":"Patel","first_name":"Amit","id":"34A254A0-F248-11E8-B48F-1D18A9856A87"}],"type":"conference","publist_id":"2336","alternative_title":["LNCS"],"month":"09"}