Existence of positive solutions to stochastic thin-film equations
We construct martingale solutions to stochastic thin-film equations by introducing a (spatial) semidiscretization and establishing convergence. The discrete scheme allows for variants of the energy and entropy estimates in the continuous setting as long as the discrete energy does not exceed certain threshold values depending on the spatial grid size $h$. Using a stopping time argument to prolongate high-energy paths constant in time, arbitrary moments of coupled energy/entropy functionals can be controlled. Having established HÃ¶lder regularity of approximate solutions, the convergence proof is then based on compactness arguments---in particular on Jakubowski's generalization of Skorokhod's theorem---weak convergence methods, and recent tools on martingale convergence.
50
1
411 - 455
411 - 455
Society for Industrial and Applied Mathematics
application/pdf