A lower bound on the number of unit distances between the vertices of a convex polygon
This paper proves that for every n ≥ 4 there is a convex n-gon such that the vertices of 2n - 7 vertex pairs are one unit of distance apart. This improves the previously best lower bound of ⌊ (5n - 5) 3⌋ given by Erdo{combining double acute accent}s and Moser if n ≥ 17.
56
2
312 - 316
312 - 316
Elsevier