Ranking intervals under visibility constraints
Let S be a set of n closed intervals on the x-axis. A ranking assigns to each interval, s, a distinct rank, p(s)∊ [1, 2,…,n]. We say that s can see t if p(s)<p(t) and there is a point p∊s∩t so that p∉u for all u with p(s)<p(u)<p(t). It is shown that a ranking can be found in time O(n log n) such that each interval sees at most three other intervals. It is also shown that a ranking that minimizes the average number of endpoints visible from an interval can be computed in time O(n 5/2). The results have applications to intersection problems for intervals, as well as to channel routing problems which arise in layouts of VLSI circuits.
34
3-4
129 - 144
129 - 144
Taylor & Francis