TY - CONF
AB - We prove that for any set S of n points in the plane and n3-α triangles spanned by the points of S there exists a point (not necessarily of S) contained in at least n3-3α/(512 log25 n) of the triangles. This implies that any set of n points in three - dimensional space defines at most 6.4n8/3 log5/3 n halving planes.
AU - Aronov, Boris
AU - Chazelle, Bernard
AU - Edelsbrunner, Herbert
AU - Guibas, Leonidas
AU - Sharir, Micha
AU - Wenger, Rephael
ID - 4077
SN - 978-0-89791-362-1
T2 - Proceedings of the 6th annual symposium on Computational geometry
TI - Points and triangles in the plane and halving planes in space
ER -