{"month":"01","status":"public","day":"01","year":"1990","scopus_import":"1","main_file_link":[{"url":"https://dl.acm.org/doi/10.1145/98524.98551"}],"user_id":"ea97e931-d5af-11eb-85d4-e6957dddbf17","article_processing_charge":"No","publication_identifier":{"isbn":["978-0-89791-362-1"]},"publication_status":"published","language":[{"iso":"eng"}],"doi":"10.1145/98524.98551","date_created":"2018-12-11T12:06:48Z","page":"116 - 127","abstract":[{"text":"In this paper we derived combinatorial point selection results for geometric objects defined by pairs of points. In a nutshell, the results say that if many pairs of a set of n points in some fixed dimension each define a geometric object of some type, then there is a point covered by many of these objects. Based on such a result for three-dimensional spheres we show that the combinatorial size of the Delaunay triangulation of a point set in space can be reduced by adding new points. We believe that from a practical point of view this is the most important result of this paper.","lang":"eng"}],"author":[{"last_name":"Chazelle","first_name":"Bernard","full_name":"Chazelle, Bernard"},{"first_name":"Herbert","orcid":"0000-0002-9823-6833","last_name":"Edelsbrunner","full_name":"Edelsbrunner, Herbert","id":"3FB178DA-F248-11E8-B48F-1D18A9856A87"},{"last_name":"Guibas","first_name":"Leonidas","full_name":"Guibas, Leonidas"},{"first_name":"John","last_name":"Hershberger","full_name":"Hershberger, John"},{"first_name":"Raimund","last_name":"Seidel","full_name":"Seidel, Raimund"},{"full_name":"Sharir, Micha","last_name":"Sharir","first_name":"Micha"}],"conference":{"location":"Berkley, CA, United States","start_date":"1990-06-07","name":"SCG: Symposium on Computational Geometry","end_date":"1990-06-09"},"oa_version":"None","citation":{"chicago":"Chazelle, Bernard, Herbert Edelsbrunner, Leonidas Guibas, John Hershberger, Raimund Seidel, and Micha Sharir. “Slimming down by Adding; Selecting Heavily Covered Points.” In Proceedings of the 6th Annual Symposium on Computational Geometry, 116–27. ACM, 1990. https://doi.org/10.1145/98524.98551.","apa":"Chazelle, B., Edelsbrunner, H., Guibas, L., Hershberger, J., Seidel, R., & Sharir, M. (1990). Slimming down by adding; selecting heavily covered points. In Proceedings of the 6th annual symposium on computational geometry (pp. 116–127). Berkley, CA, United States: ACM. https://doi.org/10.1145/98524.98551","mla":"Chazelle, Bernard, et al. “Slimming down by Adding; Selecting Heavily Covered Points.” Proceedings of the 6th Annual Symposium on Computational Geometry, ACM, 1990, pp. 116–27, doi:10.1145/98524.98551.","short":"B. Chazelle, H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, M. Sharir, in:, Proceedings of the 6th Annual Symposium on Computational Geometry, ACM, 1990, pp. 116–127.","ieee":"B. Chazelle, H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, and M. Sharir, “Slimming down by adding; selecting heavily covered points,” in Proceedings of the 6th annual symposium on computational geometry, Berkley, CA, United States, 1990, pp. 116–127.","ista":"Chazelle B, Edelsbrunner H, Guibas L, Hershberger J, Seidel R, Sharir M. 1990. Slimming down by adding; selecting heavily covered points. Proceedings of the 6th annual symposium on computational geometry. SCG: Symposium on Computational Geometry, 116–127.","ama":"Chazelle B, Edelsbrunner H, Guibas L, Hershberger J, Seidel R, Sharir M. Slimming down by adding; selecting heavily covered points. In: Proceedings of the 6th Annual Symposium on Computational Geometry. ACM; 1990:116-127. doi:10.1145/98524.98551"},"publisher":"ACM","publication":"Proceedings of the 6th annual symposium on computational geometry","type":"conference","_id":"4078","publist_id":"2046","extern":"1","date_published":"1990-01-01T00:00:00Z","title":"Slimming down by adding; selecting heavily covered points","quality_controlled":"1","date_updated":"2022-02-17T10:09:54Z"}