{"publist_id":"2046","citation":{"chicago":"Chazelle, Bernard, Herbert Edelsbrunner, Leonidas Guibas, John Hershberger, Raimund Seidel, and Micha Sharir. “Slimming down by Adding; Selecting Heavily Covered Points.” In Proceedings of the 6th Annual Symposium on Computational Geometry, 116–27. ACM, 1990. https://doi.org/10.1145/98524.98551.","apa":"Chazelle, B., Edelsbrunner, H., Guibas, L., Hershberger, J., Seidel, R., & Sharir, M. (1990). Slimming down by adding; selecting heavily covered points. In Proceedings of the 6th annual symposium on computational geometry (pp. 116–127). Berkley, CA, United States: ACM. https://doi.org/10.1145/98524.98551","short":"B. Chazelle, H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, M. Sharir, in:, Proceedings of the 6th Annual Symposium on Computational Geometry, ACM, 1990, pp. 116–127.","mla":"Chazelle, Bernard, et al. “Slimming down by Adding; Selecting Heavily Covered Points.” Proceedings of the 6th Annual Symposium on Computational Geometry, ACM, 1990, pp. 116–27, doi:10.1145/98524.98551.","ama":"Chazelle B, Edelsbrunner H, Guibas L, Hershberger J, Seidel R, Sharir M. Slimming down by adding; selecting heavily covered points. In: Proceedings of the 6th Annual Symposium on Computational Geometry. ACM; 1990:116-127. doi:10.1145/98524.98551","ista":"Chazelle B, Edelsbrunner H, Guibas L, Hershberger J, Seidel R, Sharir M. 1990. Slimming down by adding; selecting heavily covered points. Proceedings of the 6th annual symposium on computational geometry. SCG: Symposium on Computational Geometry, 116–127.","ieee":"B. Chazelle, H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, and M. Sharir, “Slimming down by adding; selecting heavily covered points,” in Proceedings of the 6th annual symposium on computational geometry, Berkley, CA, United States, 1990, pp. 116–127."},"author":[{"first_name":"Bernard","full_name":"Chazelle, Bernard","last_name":"Chazelle"},{"last_name":"Edelsbrunner","full_name":"Edelsbrunner, Herbert","first_name":"Herbert","id":"3FB178DA-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-9823-6833"},{"full_name":"Guibas, Leonidas","last_name":"Guibas","first_name":"Leonidas"},{"first_name":"John","full_name":"Hershberger, John","last_name":"Hershberger"},{"first_name":"Raimund","full_name":"Seidel, Raimund","last_name":"Seidel"},{"full_name":"Sharir, Micha","last_name":"Sharir","first_name":"Micha"}],"abstract":[{"lang":"eng","text":"In this paper we derived combinatorial point selection results for geometric objects defined by pairs of points. In a nutshell, the results say that if many pairs of a set of n points in some fixed dimension each define a geometric object of some type, then there is a point covered by many of these objects. Based on such a result for three-dimensional spheres we show that the combinatorial size of the Delaunay triangulation of a point set in space can be reduced by adding new points. We believe that from a practical point of view this is the most important result of this paper."}],"language":[{"iso":"eng"}],"type":"conference","publication_identifier":{"isbn":["978-0-89791-362-1"]},"_id":"4078","year":"1990","quality_controlled":"1","date_published":"1990-01-01T00:00:00Z","extern":"1","oa_version":"None","date_updated":"2022-02-17T10:09:54Z","month":"01","user_id":"ea97e931-d5af-11eb-85d4-e6957dddbf17","publication":"Proceedings of the 6th annual symposium on computational geometry","publisher":"ACM","title":"Slimming down by adding; selecting heavily covered points","status":"public","doi":"10.1145/98524.98551","page":"116 - 127","article_processing_charge":"No","day":"01","publication_status":"published","main_file_link":[{"url":"https://dl.acm.org/doi/10.1145/98524.98551"}],"conference":{"start_date":"1990-06-07","location":"Berkley, CA, United States","end_date":"1990-06-09","name":"SCG: Symposium on Computational Geometry"},"scopus_import":"1","date_created":"2018-12-11T12:06:48Z"}