{"main_file_link":[{"open_access":"1","url":"https://arxiv.org/abs/1805.01652"}],"publication_identifier":{"issn":["1631073X"]},"user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","day":"01","oa":1,"month":"04","page":"412-414","date_created":"2018-12-11T11:46:19Z","intvolume":" 356","language":[{"iso":"eng"}],"doi":"10.1016/j.crma.2018.03.005","type":"journal_article","quality_controlled":"1","_id":"409","abstract":[{"lang":"eng","text":"We give a simple proof of T. Stehling's result [4], whereby in any normal tiling of the plane with convex polygons with number of sides not less than six, all tiles except a finite number are hexagons."}],"volume":356,"issue":"4","scopus_import":1,"citation":{"apa":"Akopyan, A. (2018). On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. Elsevier. https://doi.org/10.1016/j.crma.2018.03.005","ieee":"A. Akopyan, “On the number of non-hexagons in a planar tiling,” Comptes Rendus Mathematique, vol. 356, no. 4. Elsevier, pp. 412–414, 2018.","ama":"Akopyan A. On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. 2018;356(4):412-414. doi:10.1016/j.crma.2018.03.005","mla":"Akopyan, Arseniy. “On the Number of Non-Hexagons in a Planar Tiling.” Comptes Rendus Mathematique, vol. 356, no. 4, Elsevier, 2018, pp. 412–14, doi:10.1016/j.crma.2018.03.005.","ista":"Akopyan A. 2018. On the number of non-hexagons in a planar tiling. Comptes Rendus Mathematique. 356(4), 412–414.","short":"A. Akopyan, Comptes Rendus Mathematique 356 (2018) 412–414.","chicago":"Akopyan, Arseniy. “On the Number of Non-Hexagons in a Planar Tiling.” Comptes Rendus Mathematique. Elsevier, 2018. https://doi.org/10.1016/j.crma.2018.03.005."},"author":[{"first_name":"Arseniy","orcid":"0000-0002-2548-617X","id":"430D2C90-F248-11E8-B48F-1D18A9856A87","last_name":"Akopyan","full_name":"Akopyan, Arseniy"}],"department":[{"_id":"HeEd"}],"date_published":"2018-04-01T00:00:00Z","publist_id":"7420","external_id":{"arxiv":["1805.01652"]},"article_processing_charge":"No","publisher":"Elsevier","article_type":"original","year":"2018","publication":"Comptes Rendus Mathematique","oa_version":"Preprint","title":"On the number of non-hexagons in a planar tiling","publication_status":"published","date_updated":"2021-01-12T07:54:26Z","status":"public"}