{"publist_id":"2029","citation":{"mla":"Edelsbrunner, Herbert, and Franco Preparata. “Minimum Polygonal Separation.” Information and Computation, vol. 77, no. 3, Elsevier, 1988, pp. 218–32, doi:10.1016/0890-5401(88)90049-1.","short":"H. Edelsbrunner, F. Preparata, Information and Computation 77 (1988) 218–232.","ista":"Edelsbrunner H, Preparata F. 1988. Minimum polygonal separation. Information and Computation. 77(3), 218–232.","ieee":"H. Edelsbrunner and F. Preparata, “Minimum polygonal separation,” Information and Computation, vol. 77, no. 3. Elsevier, pp. 218–232, 1988.","ama":"Edelsbrunner H, Preparata F. Minimum polygonal separation. Information and Computation. 1988;77(3):218-232. doi:10.1016/0890-5401(88)90049-1","chicago":"Edelsbrunner, Herbert, and Franco Preparata. “Minimum Polygonal Separation.” Information and Computation. Elsevier, 1988. https://doi.org/10.1016/0890-5401(88)90049-1.","apa":"Edelsbrunner, H., & Preparata, F. (1988). Minimum polygonal separation. Information and Computation. Elsevier. https://doi.org/10.1016/0890-5401(88)90049-1"},"abstract":[{"lang":"eng","text":"In this paper we study the problem of polygonal separation in the plane, i.e., finding a convex polygon with minimum number k of sides separating two given finite point sets (k-separator), if it exists. We show that for k = Θ(n), is a lower bound to the running time of any algorithm for this problem, and exhibit two algorithms of distinctly different flavors. The first relies on an O(n log n)-time preprocessing task, which constructs the convex hull of the internal set and a nested star-shaped polygon determined by the external set; the k-separator is contained in the annulus between the boundaries of these two polygons and is constructed in additional linear time. The second algorithm adapts the prune-and-search approach, and constructs, in each iteration, one side of the separator; its running time is O(kn), but the separator may have one more side than the minimum."}],"language":[{"iso":"eng"}],"type":"journal_article","year":"1988","volume":77,"date_published":"1988-06-01T00:00:00Z","oa_version":"None","article_type":"original","date_updated":"2022-02-08T10:36:30Z","publication":"Information and Computation","publisher":"Elsevier","status":"public","day":"01","scopus_import":"1","author":[{"orcid":"0000-0002-9823-6833","id":"3FB178DA-F248-11E8-B48F-1D18A9856A87","full_name":"Edelsbrunner, Herbert","last_name":"Edelsbrunner","first_name":"Herbert"},{"full_name":"Preparata, Franco","last_name":"Preparata","first_name":"Franco"}],"_id":"4090","publication_identifier":{"eissn":["0890-5401"]},"quality_controlled":"1","intvolume":" 77","extern":"1","acknowledgement":"Research of the first author is supported by Amoco Fnd. Fat. Dev. Comput. Sci. l-6-44862; research of the second author is supported by NSF Grant ECS 84-10902.","month":"06","user_id":"ea97e931-d5af-11eb-85d4-e6957dddbf17","title":"Minimum polygonal separation","doi":"10.1016/0890-5401(88)90049-1","article_processing_charge":"No","page":"218 - 232","publication_status":"published","main_file_link":[{"url":"https://www.sciencedirect.com/science/article/pii/0890540188900491?via%3Dihub","open_access":"1"}],"date_created":"2018-12-11T12:06:53Z","issue":"3","oa":1}