Computing the extreme distances between two convex polygons
A polygon in the plane is convex if it contains all line segments connecting any two of its points. Let P and Q denote two convex polygons. The computational complexity of finding the minimum and maximum distance possible between two points p in P and q in Q is studied. An algorithm is described that determines the minimum distance (together with points p and q that realize it) in O(logm + logn) time, where m and n denote the number of vertices of P and Q, respectively. This is optimal in the worst case. For computing the maximum distance, a lower bound Ω(m + n) is proved. This bound is also shown to be best possible by establishing an upper bound of O(m + n).
6
2
213 - 224
213 - 224
Academic Press