{"status":"public","ec_funded":1,"title":"Supporting materials \"STATISTICAL MECHANICS FOR METABOLIC NETWORKS IN STEADY-STATE GROWTH\"","ddc":["530"],"type":"research_data","month":"09","oa_version":"Published Version","date_created":"2018-12-12T12:31:41Z","date_published":"2018-09-21T00:00:00Z","keyword":["metabolic networks","e.coli core","maximum entropy","monte carlo markov chain sampling","ellipsoidal rounding"],"file_date_updated":"2020-07-14T12:47:08Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","article_processing_charge":"No","has_accepted_license":"1","related_material":{"record":[{"relation":"research_paper","id":"161","status":"public"}]},"abstract":[{"text":"Supporting material to the article \r\nSTATISTICAL MECHANICS FOR METABOLIC NETWORKS IN STEADY-STATE GROWTH\r\n\r\nboundscoli.dat\r\nFlux Bounds of the E. coli catabolic core model iAF1260 in a glucose limited minimal medium. \r\n\r\npolcoli.dat\r\nMatrix enconding the polytope of the E. coli catabolic core model iAF1260 in a glucose limited minimal medium, \r\nobtained from the soichiometric matrix by standard linear algebra (reduced row echelon form).\r\n\r\nellis.dat\r\nApproximate Lowner-John ellipsoid rounding the polytope of the E. coli catabolic core model iAF1260 in a glucose limited minimal medium\r\nobtained with the Lovasz method.\r\n\r\npoint0.dat\r\nCenter of the approximate Lowner-John ellipsoid rounding the polytope of the E. coli catabolic core model iAF1260 in a glucose limited minimal medium\r\nobtained with the Lovasz method.\r\n\r\nlovasz.cpp \r\nThis c++ code file receives in input the polytope of the feasible steady states of a metabolic network, \r\n(matrix and bounds), and it gives in output an approximate Lowner-John ellipsoid rounding the polytope\r\nwith the Lovasz method \r\nNB inputs are referred by defaults to the catabolic core of the E.Coli network iAF1260. \r\nFor further details we refer to PLoS ONE 10.4 e0122670 (2015).\r\n\r\nsampleHRnew.cpp \r\nThis c++ code file receives in input the polytope of the feasible steady states of a metabolic network, \r\n(matrix and bounds), the ellipsoid rounding the polytope, a point inside and \r\nit gives in output a max entropy sampling at fixed average growth rate \r\nof the steady states by performing an Hit-and-Run Monte Carlo Markov chain.\r\nNB inputs are referred by defaults to the catabolic core of the E.Coli network iAF1260. \r\nFor further details we refer to PLoS ONE 10.4 e0122670 (2015).","lang":"eng"}],"project":[{"grant_number":"291734","_id":"25681D80-B435-11E9-9278-68D0E5697425","name":"International IST Postdoc Fellowship Programme","call_identifier":"FP7"},{"grant_number":"P28844-B27","_id":"254E9036-B435-11E9-9278-68D0E5697425","name":"Biophysics of information processing in gene regulation","call_identifier":"FWF"}],"tmp":{"name":"Creative Commons Public Domain Dedication (CC0 1.0)","legal_code_url":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","image":"/images/cc_0.png","short":"CC0 (1.0)"},"author":[{"last_name":"De Martino","full_name":"De Martino, Daniele","id":"3FF5848A-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-5214-4706","first_name":"Daniele"},{"orcid":"0000-0002-6699-1455","id":"3D494DCA-F248-11E8-B48F-1D18A9856A87","first_name":"Gasper","last_name":"Tkacik","full_name":"Tkacik, Gasper"}],"citation":{"ieee":"D. De Martino and G. Tkačik, “Supporting materials ‘STATISTICAL MECHANICS FOR METABOLIC NETWORKS IN STEADY-STATE GROWTH.’” Institute of Science and Technology Austria, 2018.","apa":"De Martino, D., & Tkačik, G. (2018). Supporting materials “STATISTICAL MECHANICS FOR METABOLIC NETWORKS IN STEADY-STATE GROWTH.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:62","mla":"De Martino, Daniele, and Gašper Tkačik. Supporting Materials “STATISTICAL MECHANICS FOR METABOLIC NETWORKS IN STEADY-STATE GROWTH.” Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:62.","chicago":"De Martino, Daniele, and Gašper Tkačik. “Supporting Materials ‘STATISTICAL MECHANICS FOR METABOLIC NETWORKS IN STEADY-STATE GROWTH.’” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:62.","short":"D. De Martino, G. Tkačik, (2018).","ama":"De Martino D, Tkačik G. Supporting materials “STATISTICAL MECHANICS FOR METABOLIC NETWORKS IN STEADY-STATE GROWTH.” 2018. doi:10.15479/AT:ISTA:62","ista":"De Martino D, Tkačik G. 2018. Supporting materials ‘STATISTICAL MECHANICS FOR METABOLIC NETWORKS IN STEADY-STATE GROWTH’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:62."},"department":[{"_id":"GaTk"}],"license":"https://creativecommons.org/publicdomain/zero/1.0/","year":"2018","publisher":"Institute of Science and Technology Austria","day":"21","oa":1,"date_updated":"2024-02-21T13:45:39Z","datarep_id":"111","_id":"5587","doi":"10.15479/AT:ISTA:62","file":[{"date_created":"2018-12-12T13:05:13Z","file_size":14376,"content_type":"application/zip","access_level":"open_access","file_name":"IST-2018-111-v1+1_CODES.zip","creator":"system","date_updated":"2020-07-14T12:47:08Z","checksum":"97992e3e8cf8544ec985a48971708726","relation":"main_file","file_id":"5641"}]}