---
res:
bibo_abstract:
- We use the canonical bases produced by the tri-partition algorithm in (Edelsbrunner
and Ölsböck, 2018) to open and close holes in a polyhedral complex, K. In a concrete
application, we consider the Delaunay mosaic of a finite set, we let K be an Alpha
complex, and we use the persistence diagram of the distance function to guide
the hole opening and closing operations. The dependences between the holes define
a partial order on the cells in K that characterizes what can and what cannot
be constructed using the operations. The relations in this partial order reveal
structural information about the underlying filtration of complexes beyond what
is expressed by the persistence diagram.@eng
bibo_authorlist:
- foaf_Person:
foaf_givenName: Herbert
foaf_name: Edelsbrunner, Herbert
foaf_surname: Edelsbrunner
foaf_workInfoHomepage: http://www.librecat.org/personId=3FB178DA-F248-11E8-B48F-1D18A9856A87
orcid: 0000-0002-9823-6833
- foaf_Person:
foaf_givenName: Katharina
foaf_name: Ölsböck, Katharina
foaf_surname: Ölsböck
foaf_workInfoHomepage: http://www.librecat.org/personId=4D4AA390-F248-11E8-B48F-1D18A9856A87
orcid: 0000-0002-4672-8297
bibo_doi: 10.1016/j.cagd.2019.06.003
bibo_volume: 73
dct_date: 2019^xs_gYear
dct_identifier:
- UT:000485207800001
dct_language: eng
dct_publisher: Elsevier@
dct_title: Holes and dependences in an ordered complex@
...