--- _id: '6786' abstract: - lang: eng text: Dipolar coupling plays a fundamental role in the interaction between electrically or magnetically polarized species such as magnetic atoms and dipolar molecules in a gas or dipolar excitons in the solid state. Unlike Coulomb or contactlike interactions found in many atomic, molecular, and condensed-matter systems, this interaction is long-ranged and highly anisotropic, as it changes from repulsive to attractive depending on the relative positions and orientation of the dipoles. Because of this unique property, many exotic, symmetry-breaking collective states have been recently predicted for cold dipolar gases, but only a few have been experimentally detected and only in dilute atomic dipolar Bose-Einstein condensates. Here, we report on the first observation of attractive dipolar coupling between excitonic dipoles using a new design of stacked semiconductor bilayers. We show that the presence of a dipolar exciton fluid in one bilayer modifies the spatial distribution and increases the binding energy of excitonic dipoles in a vertically remote layer. The binding energy changes are explained using a many-body polaron model describing the deformation of the exciton cloud due to its interaction with a remote dipolar exciton. The surprising nonmonotonic dependence on the cloud density indicates the important role of dipolar correlations, which is unique to dense, strongly interacting dipolar solid-state systems. Our concept provides a route for the realization of dipolar lattices with strong anisotropic interactions in semiconductor systems, which open the way for the observation of theoretically predicted new and exotic collective phases, as well as for engineering and sensing their collective excitations. article_number: '021026' article_processing_charge: No article_type: original author: - first_name: Colin full_name: Hubert, Colin last_name: Hubert - first_name: Yifat full_name: Baruchi, Yifat last_name: Baruchi - first_name: Yotam full_name: Mazuz-Harpaz, Yotam last_name: Mazuz-Harpaz - first_name: Kobi full_name: Cohen, Kobi last_name: Cohen - first_name: Klaus full_name: Biermann, Klaus last_name: Biermann - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Ken full_name: West, Ken last_name: West - first_name: Loren full_name: Pfeiffer, Loren last_name: Pfeiffer - first_name: Ronen full_name: Rapaport, Ronen last_name: Rapaport - first_name: Paulo full_name: Santos, Paulo last_name: Santos citation: ama: Hubert C, Baruchi Y, Mazuz-Harpaz Y, et al. Attractive dipolar coupling between stacked exciton fluids. Physical Review X. 2019;9(2). doi:10.1103/PhysRevX.9.021026 apa: Hubert, C., Baruchi, Y., Mazuz-Harpaz, Y., Cohen, K., Biermann, K., Lemeshko, M., … Santos, P. (2019). Attractive dipolar coupling between stacked exciton fluids. Physical Review X. American Physical Society. https://doi.org/10.1103/PhysRevX.9.021026 chicago: Hubert, Colin, Yifat Baruchi, Yotam Mazuz-Harpaz, Kobi Cohen, Klaus Biermann, Mikhail Lemeshko, Ken West, Loren Pfeiffer, Ronen Rapaport, and Paulo Santos. “Attractive Dipolar Coupling between Stacked Exciton Fluids.” Physical Review X. American Physical Society, 2019. https://doi.org/10.1103/PhysRevX.9.021026. ieee: C. Hubert et al., “Attractive dipolar coupling between stacked exciton fluids,” Physical Review X, vol. 9, no. 2. American Physical Society, 2019. ista: Hubert C, Baruchi Y, Mazuz-Harpaz Y, Cohen K, Biermann K, Lemeshko M, West K, Pfeiffer L, Rapaport R, Santos P. 2019. Attractive dipolar coupling between stacked exciton fluids. Physical Review X. 9(2), 021026. mla: Hubert, Colin, et al. “Attractive Dipolar Coupling between Stacked Exciton Fluids.” Physical Review X, vol. 9, no. 2, 021026, American Physical Society, 2019, doi:10.1103/PhysRevX.9.021026. short: C. Hubert, Y. Baruchi, Y. Mazuz-Harpaz, K. Cohen, K. Biermann, M. Lemeshko, K. West, L. Pfeiffer, R. Rapaport, P. Santos, Physical Review X 9 (2019). date_created: 2019-08-11T21:59:20Z date_published: 2019-05-08T00:00:00Z date_updated: 2024-02-28T13:12:48Z day: '08' ddc: - '530' department: - _id: MiLe doi: 10.1103/PhysRevX.9.021026 external_id: arxiv: - '1807.11238' isi: - '000467402900001' file: - access_level: open_access checksum: 065ff82ee4a1d2c3773ce4b76ff4213c content_type: application/pdf creator: dernst date_created: 2019-08-12T12:14:18Z date_updated: 2020-07-14T12:47:40Z file_id: '6802' file_name: 2019_PhysReviewX_Hubert.pdf file_size: 1193550 relation: main_file file_date_updated: 2020-07-14T12:47:40Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '2' language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review X publication_identifier: eissn: - 2160-3308 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Attractive dipolar coupling between stacked exciton fluids tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9 year: '2019' ...