{"date_published":"2018-09-28T00:00:00Z","quality_controlled":"1","publication_identifier":{"issn":["2041-1723"]},"doi":"10.1038/s41467-018-06412-w","month":"09","publication":"Nature Communications","intvolume":" 9","article_processing_charge":"No","date_updated":"2021-01-12T08:11:37Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","article_type":"original","volume":9,"day":"28","file_date_updated":"2020-07-14T12:47:48Z","tmp":{"short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","image":"/images/cc_by.png","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)"},"has_accepted_license":"1","oa_version":"Published Version","oa":1,"abstract":[{"lang":"eng","text":"Unusual behavior in quantum materials commonly arises from their effective low-dimensional physics, reflecting the underlying anisotropy in the spin and charge degrees of freedom. Here we introduce the magnetotropic coefficient k = ∂2F/∂θ2, the second derivative of the free energy F with respect to the magnetic field orientation θ in the crystal. We show that the magnetotropic coefficient can be quantitatively determined from a shift in the resonant frequency of a commercially available atomic force microscopy cantilever under magnetic field. This detection method enables part per 100 million sensitivity and the ability to measure magnetic anisotropy in nanogram-scale samples, as demonstrated on the Weyl semimetal NbP. Measurement of the magnetotropic coefficient in the spin-liquid candidate RuCl3 highlights its sensitivity to anisotropic phase transitions and allows a quantitative comparison to other thermodynamic coefficients via the Ehrenfest relations."}],"publisher":"Springer Nature","ddc":["530"],"publication_status":"published","author":[{"last_name":"Modic","first_name":"Kimberly A","full_name":"Modic, Kimberly A","orcid":"0000-0001-9760-3147","id":"13C26AC0-EB69-11E9-87C6-5F3BE6697425"},{"full_name":"Bachmann, Maja D.","first_name":"Maja D.","last_name":"Bachmann"},{"full_name":"Ramshaw, B. J.","first_name":"B. J.","last_name":"Ramshaw"},{"full_name":"Arnold, F.","first_name":"F.","last_name":"Arnold"},{"full_name":"Shirer, K. R.","first_name":"K. R.","last_name":"Shirer"},{"first_name":"Amelia","last_name":"Estry","full_name":"Estry, Amelia"},{"full_name":"Betts, J. B.","last_name":"Betts","first_name":"J. B."},{"last_name":"Ghimire","first_name":"Nirmal J.","full_name":"Ghimire, Nirmal J."},{"first_name":"E. D.","last_name":"Bauer","full_name":"Bauer, E. D."},{"first_name":"Marcus","last_name":"Schmidt","full_name":"Schmidt, Marcus"},{"full_name":"Baenitz, Michael","last_name":"Baenitz","first_name":"Michael"},{"full_name":"Svanidze, E.","last_name":"Svanidze","first_name":"E."},{"last_name":"McDonald","first_name":"Ross D.","full_name":"McDonald, Ross D."},{"full_name":"Shekhter, Arkady","last_name":"Shekhter","first_name":"Arkady"},{"last_name":"Moll","first_name":"Philip J. W.","full_name":"Moll, Philip J. W."}],"extern":"1","date_created":"2019-11-19T13:02:20Z","_id":"7059","issue":"1","language":[{"iso":"eng"}],"type":"journal_article","title":"Resonant torsion magnetometry in anisotropic quantum materials","page":"3975","year":"2018","file":[{"access_level":"open_access","file_name":"2018_NatureComm_Modic.pdf","file_id":"7088","creator":"dernst","date_created":"2019-11-20T12:48:58Z","date_updated":"2020-07-14T12:47:48Z","checksum":"46a313c816e66899d4dad2cf3583e5b0","content_type":"application/pdf","relation":"main_file","file_size":1257681}],"status":"public","citation":{"ista":"Modic KA, Bachmann MD, Ramshaw BJ, Arnold F, Shirer KR, Estry A, Betts JB, Ghimire NJ, Bauer ED, Schmidt M, Baenitz M, Svanidze E, McDonald RD, Shekhter A, Moll PJW. 2018. Resonant torsion magnetometry in anisotropic quantum materials. Nature Communications. 9(1), 3975.","mla":"Modic, Kimberly A., et al. “Resonant Torsion Magnetometry in Anisotropic Quantum Materials.” Nature Communications, vol. 9, no. 1, Springer Nature, 2018, p. 3975, doi:10.1038/s41467-018-06412-w.","chicago":"Modic, Kimberly A, Maja D. Bachmann, B. J. Ramshaw, F. Arnold, K. R. Shirer, Amelia Estry, J. B. Betts, et al. “Resonant Torsion Magnetometry in Anisotropic Quantum Materials.” Nature Communications. Springer Nature, 2018. https://doi.org/10.1038/s41467-018-06412-w.","apa":"Modic, K. A., Bachmann, M. D., Ramshaw, B. J., Arnold, F., Shirer, K. R., Estry, A., … Moll, P. J. W. (2018). Resonant torsion magnetometry in anisotropic quantum materials. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-018-06412-w","ama":"Modic KA, Bachmann MD, Ramshaw BJ, et al. Resonant torsion magnetometry in anisotropic quantum materials. Nature Communications. 2018;9(1):3975. doi:10.1038/s41467-018-06412-w","short":"K.A. Modic, M.D. Bachmann, B.J. Ramshaw, F. Arnold, K.R. Shirer, A. Estry, J.B. Betts, N.J. Ghimire, E.D. Bauer, M. Schmidt, M. Baenitz, E. Svanidze, R.D. McDonald, A. Shekhter, P.J.W. Moll, Nature Communications 9 (2018) 3975.","ieee":"K. A. Modic et al., “Resonant torsion magnetometry in anisotropic quantum materials,” Nature Communications, vol. 9, no. 1. Springer Nature, p. 3975, 2018."}}