{"publication_status":"published","publisher":"Nature Publishing Group","oa":1,"scopus_import":"1","citation":{"short":"H. Watzinger, J. Kukucka, L. Vukušić, F. Gao, T. Wang, F. Schäffler, J. Zhang, G. Katsaros, Nature Communications 9 (2018).","apa":"Watzinger, H., Kukucka, J., Vukušić, L., Gao, F., Wang, T., Schäffler, F., … Katsaros, G. (2018). A germanium hole spin qubit. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/s41467-018-06418-4","ama":"Watzinger H, Kukucka J, Vukušić L, et al. A germanium hole spin qubit. Nature Communications. 2018;9(3902). doi:10.1038/s41467-018-06418-4","ista":"Watzinger H, Kukucka J, Vukušić L, Gao F, Wang T, Schäffler F, Zhang J, Katsaros G. 2018. A germanium hole spin qubit. Nature Communications. 9(3902).","chicago":"Watzinger, Hannes, Josip Kukucka, Lada Vukušić, Fei Gao, Ting Wang, Friedrich Schäffler, Jian Zhang, and Georgios Katsaros. “A Germanium Hole Spin Qubit.” Nature Communications. Nature Publishing Group, 2018. https://doi.org/10.1038/s41467-018-06418-4.","ieee":"H. Watzinger et al., “A germanium hole spin qubit,” Nature Communications, vol. 9, no. 3902. Nature Publishing Group, 2018.","mla":"Watzinger, Hannes, et al. “A Germanium Hole Spin Qubit.” Nature Communications, vol. 9, no. 3902, Nature Publishing Group, 2018, doi:10.1038/s41467-018-06418-4."},"type":"journal_article","oa_version":"Published Version","issue":"3902 ","month":"09","title":"A germanium hole spin qubit","_id":"77","doi":"10.1038/s41467-018-06418-4","acknowledged_ssus":[{"_id":"M-Shop"},{"_id":"NanoFab"}],"article_processing_charge":"Yes","date_published":"2018-09-25T00:00:00Z","ddc":["530"],"year":"2018","file":[{"access_level":"open_access","file_id":"5687","checksum":"e7148c10a64497e279c4de570b6cc544","creator":"dernst","content_type":"application/pdf","date_updated":"2020-07-14T12:48:02Z","date_created":"2018-12-17T10:28:30Z","file_name":"2018_NatureComm_Watzinger.pdf","file_size":1063469,"relation":"main_file"}],"date_created":"2018-12-11T11:44:30Z","publication":"Nature Communications","department":[{"_id":"GeKa"}],"user_id":"c635000d-4b10-11ee-a964-aac5a93f6ac1","author":[{"last_name":"Watzinger","id":"35DF8E50-F248-11E8-B48F-1D18A9856A87","first_name":"Hannes","full_name":"Watzinger, Hannes"},{"id":"3F5D8856-F248-11E8-B48F-1D18A9856A87","last_name":"Kukucka","full_name":"Kukucka, Josip","first_name":"Josip"},{"full_name":"Vukusic, Lada","first_name":"Lada","orcid":"0000-0003-2424-8636","id":"31E9F056-F248-11E8-B48F-1D18A9856A87","last_name":"Vukusic"},{"first_name":"Fei","full_name":"Gao, Fei","last_name":"Gao"},{"first_name":"Ting","full_name":"Wang, Ting","last_name":"Wang"},{"full_name":"Schäffler, Friedrich","first_name":"Friedrich","last_name":"Schäffler"},{"last_name":"Zhang","full_name":"Zhang, Jian","first_name":"Jian"},{"id":"38DB5788-F248-11E8-B48F-1D18A9856A87","last_name":"Katsaros","full_name":"Katsaros, Georgios","first_name":"Georgios","orcid":"0000-0001-8342-202X"}],"file_date_updated":"2020-07-14T12:48:02Z","language":[{"iso":"eng"}],"volume":9,"isi":1,"project":[{"_id":"25517E86-B435-11E9-9278-68D0E5697425","name":"Towards Spin qubits and Majorana fermions in Germanium selfassembled hut-wires","call_identifier":"FP7","grant_number":"335497"},{"name":"Loch Spin-Qubits und Majorana-Fermionen in Germanium","_id":"2552F888-B435-11E9-9278-68D0E5697425","grant_number":"Y00715","call_identifier":"FWF"}],"article_type":"original","external_id":{"isi":["000445560800010"]},"has_accepted_license":"1","quality_controlled":"1","day":"25","abstract":[{"text":"Holes confined in quantum dots have gained considerable interest in the past few years due to their potential as spin qubits. Here we demonstrate two-axis control of a spin 3/2 qubit in natural Ge. The qubit is formed in a hut wire double quantum dot device. The Pauli spin blockade principle allowed us to demonstrate electric dipole spin resonance by applying a radio frequency electric field to one of the electrodes defining the double quantum dot. Coherent hole spin oscillations with Rabi frequencies reaching 140 MHz are demonstrated and dephasing times of 130 ns are measured. The reported results emphasize the potential of Ge as a platform for fast and electrically tunable hole spin qubit devices.","lang":"eng"}],"status":"public","intvolume":" 9","tmp":{"name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","image":"/images/cc_by.png"},"date_updated":"2023-09-08T11:44:02Z","ec_funded":1,"related_material":{"record":[{"relation":"popular_science","id":"7977"},{"relation":"dissertation_contains","status":"public","id":"7996"}]}}