{"publication_status":"published","arxiv":1,"quality_controlled":"1","ddc":["530"],"status":"public","article_processing_charge":"No","year":"2020","department":[{"_id":"JoFi"}],"type":"journal_article","isi":1,"external_id":{"pmid":["32548249"],"isi":["000531171100045"],"arxiv":["1908.03058"]},"date_created":"2020-05-31T22:00:49Z","language":[{"iso":"eng"}],"issue":"19","author":[{"first_name":"Shabir","orcid":"0000-0003-0415-1423","full_name":"Barzanjeh, Shabir","id":"2D25E1F6-F248-11E8-B48F-1D18A9856A87","last_name":"Barzanjeh"},{"last_name":"Pirandola","full_name":"Pirandola, S.","first_name":"S."},{"full_name":"Vitali, D","last_name":"Vitali","first_name":"D"},{"orcid":"0000-0001-8112-028X","first_name":"Johannes M","full_name":"Fink, Johannes M","id":"4B591CBA-F248-11E8-B48F-1D18A9856A87","last_name":"Fink"}],"oa_version":"Published Version","related_material":{"record":[{"id":"9001","status":"public","relation":"later_version"}],"link":[{"relation":"press_release","url":"https://ist.ac.at/en/news/scientists-demonstrate-quantum-radar-prototype/","description":"News on IST Homepage"}]},"abstract":[{"lang":"eng","text":"Quantum illumination uses entangled signal-idler photon pairs to boost the detection efficiency of low-reflectivity objects in environments with bright thermal noise. Its advantage is particularly evident at low signal powers, a promising feature for applications such as noninvasive biomedical scanning or low-power short-range radar. Here, we experimentally investigate the concept of quantum illumination at microwave frequencies. We generate entangled fields to illuminate a room-temperature object at a distance of 1 m in a free-space detection setup. We implement a digital phase-conjugate receiver based on linear quadrature measurements that outperforms a symmetric classical noise radar in the same conditions, despite the entanglement-breaking signal path. Starting from experimental data, we also simulate the case of perfect idler photon number detection, which results in a quantum advantage compared with the relative classical benchmark. Our results highlight the opportunities and challenges in the way toward a first room-temperature application of microwave quantum circuits."}],"pmid":1,"volume":6,"file_date_updated":"2020-07-14T12:48:05Z","publication":"Science Advances","corr_author":"1","publication_identifier":{"eissn":["23752548"]},"citation":{"ista":"Barzanjeh S, Pirandola S, Vitali D, Fink JM. 2020. Microwave quantum illumination using a digital receiver. Science Advances. 6(19), eabb0451.","ama":"Barzanjeh S, Pirandola S, Vitali D, Fink JM. Microwave quantum illumination using a digital receiver. Science Advances. 2020;6(19). doi:10.1126/sciadv.abb0451","mla":"Barzanjeh, Shabir, et al. “Microwave Quantum Illumination Using a Digital Receiver.” Science Advances, vol. 6, no. 19, eabb0451, AAAS, 2020, doi:10.1126/sciadv.abb0451.","short":"S. Barzanjeh, S. Pirandola, D. Vitali, J.M. Fink, Science Advances 6 (2020).","chicago":"Barzanjeh, Shabir, S. Pirandola, D Vitali, and Johannes M Fink. “Microwave Quantum Illumination Using a Digital Receiver.” Science Advances. AAAS, 2020. https://doi.org/10.1126/sciadv.abb0451.","ieee":"S. Barzanjeh, S. Pirandola, D. Vitali, and J. M. Fink, “Microwave quantum illumination using a digital receiver,” Science Advances, vol. 6, no. 19. AAAS, 2020.","apa":"Barzanjeh, S., Pirandola, S., Vitali, D., & Fink, J. M. (2020). Microwave quantum illumination using a digital receiver. Science Advances. AAAS. https://doi.org/10.1126/sciadv.abb0451"},"publisher":"AAAS","article_type":"original","_id":"7910","file":[{"date_created":"2020-06-02T09:18:36Z","creator":"dernst","content_type":"application/pdf","file_name":"2020_ScienceAdvances_Barzanjeh.pdf","relation":"main_file","file_size":795822,"access_level":"open_access","checksum":"16fa61cc1951b444ee74c07188cda9da","file_id":"7913","date_updated":"2020-07-14T12:48:05Z"}],"tmp":{"short":"CC BY (4.0)","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","image":"/images/cc_by.png","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode"},"project":[{"call_identifier":"H2020","_id":"26336814-B435-11E9-9278-68D0E5697425","name":"A Fiber Optic Transceiver for Superconducting Qubits","grant_number":"758053"},{"call_identifier":"H2020","_id":"237CBA6C-32DE-11EA-91FC-C7463DDC885E","name":"Quantum readout techniques and technologies","grant_number":"862644"},{"grant_number":"707438","name":"Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics","_id":"258047B6-B435-11E9-9278-68D0E5697425","call_identifier":"H2020"},{"call_identifier":"H2020","grant_number":"732894","name":"Hybrid Optomechanical Technologies","_id":"257EB838-B435-11E9-9278-68D0E5697425"},{"grant_number":"F07105","_id":"26927A52-B435-11E9-9278-68D0E5697425","name":"Integrating superconducting quantum circuits","call_identifier":"FWF"}],"has_accepted_license":"1","doi":"10.1126/sciadv.abb0451","article_number":"eabb0451","ec_funded":1,"day":"06","intvolume":" 6","date_published":"2020-05-06T00:00:00Z","scopus_import":"1","title":"Microwave quantum illumination using a digital receiver","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","oa":1,"month":"05","date_updated":"2025-06-12T07:18:03Z"}