---
res:
bibo_abstract:
- Let P be a finite point set in the plane. A cordinary triangle in P is a subset
of P consisting of three non-collinear points such that each of the three lines
determined by the three points contains at most c points of P . Motivated by a
question of Erdös, and answering a question of de Zeeuw, we prove that there exists
a constant c > 0such that P contains a c-ordinary triangle, provided that P
is not contained in the union of two lines. Furthermore, the number of c-ordinary
triangles in P is Ω(| P |). @eng
bibo_authorlist:
- foaf_Person:
foaf_givenName: Radoslav
foaf_name: Fulek, Radoslav
foaf_surname: Fulek
foaf_workInfoHomepage: http://www.librecat.org/personId=39F3FFE4-F248-11E8-B48F-1D18A9856A87
orcid: 0000-0001-8485-1774
- foaf_Person:
foaf_givenName: Hossein
foaf_name: Mojarrad, Hossein
foaf_surname: Mojarrad
- foaf_Person:
foaf_givenName: Márton
foaf_name: Naszódi, Márton
foaf_surname: Naszódi
- foaf_Person:
foaf_givenName: József
foaf_name: Solymosi, József
foaf_surname: Solymosi
- foaf_Person:
foaf_givenName: Sebastian
foaf_name: Stich, Sebastian
foaf_surname: Stich
- foaf_Person:
foaf_givenName: May
foaf_name: Szedlák, May
foaf_surname: Szedlák
bibo_doi: 10.1016/j.comgeo.2017.07.002
bibo_volume: 66
dct_date: 2017^xs_gYear
dct_identifier:
- UT:000412039700003
dct_isPartOf:
- http://id.crossref.org/issn/09257721
dct_language: eng
dct_publisher: Elsevier@
dct_title: On the existence of ordinary triangles@
...