--- _id: '8094' abstract: - lang: eng text: 'With the accelerated development of robot technologies, optimal control becomes one of the central themes of research. In traditional approaches, the controller, by its internal functionality, finds appropriate actions on the basis of the history of sensor values, guided by the goals, intentions, objectives, learning schemes, and so forth. The idea is that the controller controls the world---the body plus its environment---as reliably as possible. This paper focuses on new lines of self-organization for developmental robotics. We apply the recently developed differential extrinsic synaptic plasticity to a muscle-tendon driven arm-shoulder system from the Myorobotics toolkit. In the experiments, we observe a vast variety of self-organized behavior patterns: when left alone, the arm realizes pseudo-random sequences of different poses. By applying physical forces, the system can be entrained into definite motion patterns like wiping a table. Most interestingly, after attaching an object, the controller gets in a functional resonance with the object''s internal dynamics, starting to shake spontaneously bottles half-filled with water or sensitively driving an attached pendulum into a circular mode. When attached to the crank of a wheel the neural system independently discovers how to rotate it. In this way, the robot discovers affordances of objects its body is interacting with.' article_processing_charge: No author: - first_name: Georg S full_name: Martius, Georg S id: 3A276B68-F248-11E8-B48F-1D18A9856A87 last_name: Martius - first_name: Rafael full_name: Hostettler, Rafael last_name: Hostettler - first_name: Alois full_name: Knoll, Alois last_name: Knoll - first_name: Ralf full_name: Der, Ralf last_name: Der citation: ama: 'Martius GS, Hostettler R, Knoll A, Der R. Self-organized control of an tendon driven arm by differential extrinsic plasticity. In: Proceedings of the Artificial Life Conference 2016. Vol 28. MIT Press; 2016:142-143. doi:10.7551/978-0-262-33936-0-ch029' apa: 'Martius, G. S., Hostettler, R., Knoll, A., & Der, R. (2016). Self-organized control of an tendon driven arm by differential extrinsic plasticity. In Proceedings of the Artificial Life Conference 2016 (Vol. 28, pp. 142–143). Cancun, Mexico: MIT Press. https://doi.org/10.7551/978-0-262-33936-0-ch029' chicago: Martius, Georg S, Rafael Hostettler, Alois Knoll, and Ralf Der. “Self-Organized Control of an Tendon Driven Arm by Differential Extrinsic Plasticity.” In Proceedings of the Artificial Life Conference 2016, 28:142–43. MIT Press, 2016. https://doi.org/10.7551/978-0-262-33936-0-ch029. ieee: G. S. Martius, R. Hostettler, A. Knoll, and R. Der, “Self-organized control of an tendon driven arm by differential extrinsic plasticity,” in Proceedings of the Artificial Life Conference 2016, Cancun, Mexico, 2016, vol. 28, pp. 142–143. ista: 'Martius GS, Hostettler R, Knoll A, Der R. 2016. Self-organized control of an tendon driven arm by differential extrinsic plasticity. Proceedings of the Artificial Life Conference 2016. ALIFE 2016: 15th International Conference on the Synthesis and Simulation of Living Systems vol. 28, 142–143.' mla: Martius, Georg S., et al. “Self-Organized Control of an Tendon Driven Arm by Differential Extrinsic Plasticity.” Proceedings of the Artificial Life Conference 2016, vol. 28, MIT Press, 2016, pp. 142–43, doi:10.7551/978-0-262-33936-0-ch029. short: G.S. Martius, R. Hostettler, A. Knoll, R. Der, in:, Proceedings of the Artificial Life Conference 2016, MIT Press, 2016, pp. 142–143. conference: end_date: 2016-07-08 location: Cancun, Mexico name: 'ALIFE 2016: 15th International Conference on the Synthesis and Simulation of Living Systems' start_date: 2016-07-04 date_created: 2020-07-05T22:00:47Z date_published: 2016-09-01T00:00:00Z date_updated: 2021-01-12T08:16:53Z day: '01' ddc: - '610' department: - _id: ChLa - _id: GaTk doi: 10.7551/978-0-262-33936-0-ch029 ec_funded: 1 file: - access_level: open_access checksum: cff63e7a4b8ac466ba51a9c84153a940 content_type: application/pdf creator: cziletti date_created: 2020-07-06T12:59:09Z date_updated: 2020-07-14T12:48:09Z file_id: '8096' file_name: 2016_ProcALIFE_Martius.pdf file_size: 678670 relation: main_file file_date_updated: 2020-07-14T12:48:09Z has_accepted_license: '1' intvolume: ' 28' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '09' oa: 1 oa_version: Published Version page: 142-143 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Proceedings of the Artificial Life Conference 2016 publication_identifier: isbn: - '9780262339360' publication_status: published publisher: MIT Press quality_controlled: '1' scopus_import: 1 status: public title: Self-organized control of an tendon driven arm by differential extrinsic plasticity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 volume: 28 year: '2016' ...