Sandpile solitons via smoothing of superharmonic functions
Let 𝐹:ℤ2→ℤ be the pointwise minimum of several linear functions. The theory of smoothing allows us to prove that under certain conditions there exists the pointwise minimal function among all integer-valued superharmonic functions coinciding with F “at infinity”. We develop such a theory to prove existence of so-called solitons (or strings) in a sandpile model, studied by S. Caracciolo, G. Paoletti, and A. Sportiello. Thus we made a step towards understanding the phenomena of the identity in the sandpile group for planar domains where solitons appear according to experiments. We prove that sandpile states, defined using our smoothing procedure, move changeless when we apply the wave operator (that is why we call them solitons), and can interact, forming triads and nodes.
378
9
1649-1675
1649-1675
Springer Nature