@article{835, abstract = {An outstanding question in animal development, tissue homeostasis and disease is how cell populations adapt to sensory inputs. During Drosophila larval development, hematopoietic sites are in direct contact with sensory neuron clusters of the peripheral nervous system (PNS), and blood cells (hemocytes) require the PNS for their survival and recruitment to these microenvironments, known as Hematopoietic Pockets. Here we report that Activin-β, a TGF-β family ligand, is expressed by sensory neurons of the PNS and regulates the proliferation and adhesion of hemocytes. These hemocyte responses depend on PNS activity, as shown by agonist treatment and transient silencing of sensory neurons. Activin-β has a key role in this regulation, which is apparent from reporter expression and mutant analyses. This mechanism of local sensory neurons controlling blood cell adaptation invites evolutionary parallels with vertebrate hematopoietic progenitors and the independent myeloid system of tissue macrophages, whose regulation by local microenvironments remain undefined.}, author = {Makhijani, Kalpana and Alexander, Brandy and Rao, Deepti and Petraki, Sophia and Herboso, Leire and Kukar, Katelyn and Batool, Itrat and Wachner, Stephanie and Gold, Katrina and Wong, Corinna and O'Connor, Michael and Brückner, Katja}, issn = {20411723}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, title = {{Regulation of Drosophila hematopoietic sites by Activin-β from active sensory neurons}}, doi = {10.1038/ncomms15990}, volume = {8}, year = {2017}, }