--- _id: '9097' abstract: - lang: eng text: Psoriasis is a chronic inflammatory skin disease clinically characterized by the appearance of red colored, well-demarcated plaques with thickened skin and with silvery scales. Recent studies have established the involvement of a complex signalling network of interactions between cytokines, immune cells and skin cells called keratinocytes. Keratinocytes form the cells of the outermost layer of the skin (epidermis). Visible plaques in psoriasis are developed due to the fast proliferation and unusual differentiation of keratinocyte cells. Despite that, the exact mechanism of the appearance of these plaques in the cytokine-immune cell network is not clear. A mathematical model embodying interactions between key immune cells believed to be involved in psoriasis, keratinocytes and relevant cytokines has been developed. The complex network formed of these interactions poses several challenges. Here, we choose to study subnetworks of this complex network and initially focus on interactions involving TNFα, IL-23/IL-17, and IL-15. These are chosen based on known evidence of their therapeutic efficacy. In addition, we explore the role of IL-15 in the pathogenesis of psoriasis and its potential as a future drug target for a novel treatment option. We perform steady state analyses for these subnetworks and demonstrate that the interactions between cells, driven by cytokines could cause the emergence of a psoriasis state (hyper-proliferation of keratinocytes) when levels of TNFα, IL-23/IL-17 or IL-15 are increased. The model results explain and support the clinical potentiality of anti-cytokine treatments. Interestingly, our results suggest different dynamic scenarios underpin the pathogenesis of psoriasis, depending upon the dominant cytokines of subnetworks. We observed that the increase in the level of IL-23/IL-17 and IL-15 could lead to psoriasis via a bistable route, whereas an increase in the level of TNFα would lead to a monotonic and gradual disease progression. Further, we demonstrate how this insight, bistability, could be exploited to improve the current therapies and develop novel treatment strategies for psoriasis. acknowledgement: RP acknowledges the Department of Science and Technology, India for the support through the DST-INSPIRE Faculty Award (DST/INSPIRE/04/2015/001939). This work was supported by the Engineering and Physical Sciences Research Council (EPSRC), United Kingdom (Grant numbers EP/J018295/1, EP/J018392/1, EP/N014391/1). The contribution of RP was also supported by the later Grant. This work was generously supported by the Welcome Trust Institutional Strategic Support Award (204909/Z/16/Z) too. The contribution of MG was supported by the EPSRC via EP/N014391/1 and a Wellcome Trust Institutional Strategic Support Award (WT105618MA). The contribution of YA was generously supported by the Wellcome Trust Institutional Strategic Support Award (WT105618MA). article_number: '2204' article_processing_charge: No article_type: original author: - first_name: Rakesh full_name: Pandey, Rakesh last_name: Pandey - first_name: Yusur full_name: Al-Nuaimi, Yusur last_name: Al-Nuaimi - first_name: Rajiv Kumar full_name: Mishra, Rajiv Kumar id: 46CB58F2-F248-11E8-B48F-1D18A9856A87 last_name: Mishra - first_name: Sarah K. full_name: Spurgeon, Sarah K. last_name: Spurgeon - first_name: Marc full_name: Goodfellow, Marc last_name: Goodfellow citation: ama: Pandey R, Al-Nuaimi Y, Mishra RK, Spurgeon SK, Goodfellow M. Role of subnetworks mediated by TNF α, IL-23/IL-17 and IL-15 in a network involved in the pathogenesis of psoriasis. Scientific Reports. 2021;11. doi:10.1038/s41598-020-80507-7 apa: Pandey, R., Al-Nuaimi, Y., Mishra, R. K., Spurgeon, S. K., & Goodfellow, M. (2021). Role of subnetworks mediated by TNF α, IL-23/IL-17 and IL-15 in a network involved in the pathogenesis of psoriasis. Scientific Reports. Springer Nature. https://doi.org/10.1038/s41598-020-80507-7 chicago: Pandey, Rakesh, Yusur Al-Nuaimi, Rajiv Kumar Mishra, Sarah K. Spurgeon, and Marc Goodfellow. “Role of Subnetworks Mediated by TNF α, IL-23/IL-17 and IL-15 in a Network Involved in the Pathogenesis of Psoriasis.” Scientific Reports. Springer Nature, 2021. https://doi.org/10.1038/s41598-020-80507-7. ieee: R. Pandey, Y. Al-Nuaimi, R. K. Mishra, S. K. Spurgeon, and M. Goodfellow, “Role of subnetworks mediated by TNF α, IL-23/IL-17 and IL-15 in a network involved in the pathogenesis of psoriasis,” Scientific Reports, vol. 11. Springer Nature, 2021. ista: Pandey R, Al-Nuaimi Y, Mishra RK, Spurgeon SK, Goodfellow M. 2021. Role of subnetworks mediated by TNF α, IL-23/IL-17 and IL-15 in a network involved in the pathogenesis of psoriasis. Scientific Reports. 11, 2204. mla: Pandey, Rakesh, et al. “Role of Subnetworks Mediated by TNF α, IL-23/IL-17 and IL-15 in a Network Involved in the Pathogenesis of Psoriasis.” Scientific Reports, vol. 11, 2204, Springer Nature, 2021, doi:10.1038/s41598-020-80507-7. short: R. Pandey, Y. Al-Nuaimi, R.K. Mishra, S.K. Spurgeon, M. Goodfellow, Scientific Reports 11 (2021). date_created: 2021-02-07T23:01:12Z date_published: 2021-01-26T00:00:00Z date_updated: 2022-08-19T07:22:23Z day: '26' ddc: - '570' department: - _id: PeJo doi: 10.1038/s41598-020-80507-7 file: - access_level: open_access checksum: e8a68df48750712671f5c47b0228e531 content_type: application/pdf creator: dernst date_created: 2021-02-09T07:33:23Z date_updated: 2021-02-09T07:33:23Z file_id: '9106' file_name: 2021_ScientificReports_Pandey.pdf file_size: 2885056 relation: main_file success: 1 file_date_updated: 2021-02-09T07:33:23Z has_accepted_license: '1' intvolume: ' 11' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '01' oa: 1 oa_version: Published Version publication: Scientific Reports publication_identifier: eissn: - '20452322' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Role of subnetworks mediated by TNF α, IL-23/IL-17 and IL-15 in a network involved in the pathogenesis of psoriasis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2021' ...