@article{9118, abstract = {Cesium lead halides have intrinsically unstable crystal lattices and easily transform within perovskite and nonperovskite structures. In this work, we explore the conversion of the perovskite CsPbBr3 into Cs4PbBr6 in the presence of PbS at 450 °C to produce doped nanocrystal-based composites with embedded Cs4PbBr6 nanoprecipitates. We show that PbBr2 is extracted from CsPbBr3 and diffuses into the PbS lattice with a consequent increase in the concentration of free charge carriers. This new doping strategy enables the adjustment of the density of charge carriers between 1019 and 1020 cm–3, and it may serve as a general strategy for doping other nanocrystal-based semiconductors.}, author = {Calcabrini, Mariano and Genc, Aziz and Liu, Yu and Kleinhanns, Tobias and Lee, Seungho and Dirin, Dmitry N. and Akkerman, Quinten A. and Kovalenko, Maksym V. and Arbiol, Jordi and Ibáñez, Maria}, issn = {2380-8195}, journal = {ACS Energy Letters}, number = {2}, pages = {581--587}, publisher = {American Chemical Society}, title = {{Exploiting the lability of metal halide perovskites for doping semiconductor nanocomposites}}, doi = {10.1021/acsenergylett.0c02448}, volume = {6}, year = {2021}, }