--- _id: '913' abstract: - lang: eng text: Coordinated cell polarization in developing tissues is a recurrent theme in multicellular organisms. In plants, a directional distribution of the plant hormone auxin is at the core of many developmental programs. A feedback regulation of auxin on the polarized localization of PIN auxin transporters in individual cells has been proposed as a self-organizing mechanism for coordinated tissue polarization, but the molecular mechanisms linking auxin signalling to PIN-dependent auxin transport remain unknown. We performed a microarray-based approach to find regulators of the auxin-induced PIN relocation in the Arabidopsis thaliana root. We identified a subset of a family of phosphatidylinositol transfer proteins (PITP), the PATELLINs (PATL). Here, we show that PATLs are expressed in partially overlapping cells types in different tissues going through mitosis or initiating differentiation programs. PATLs are plasma membrane-associated proteins accumulated in Arabidopsis embryos, primary roots, lateral root primordia, and developing stomata. Higher order patl mutants display reduced PIN1 repolarization in response to auxin, shorter root apical meristem, and drastic defects in embryo and seedling development. This suggests PATLs redundantly play a crucial role in polarity and patterning in Arabidopsis. article_number: jcs.204198 article_processing_charge: No author: - first_name: Ricardo full_name: Tejos, Ricardo last_name: Tejos - first_name: Cecilia full_name: Rodríguez Furlán, Cecilia last_name: Rodríguez Furlán - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Michael full_name: Sauer, Michael last_name: Sauer - first_name: Lorena full_name: Norambuena, Lorena last_name: Norambuena - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Tejos R, Rodríguez Furlán C, Adamowski M, Sauer M, Norambuena L, Friml J. PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana. Journal of Cell Science. 2018;131(2). doi:10.1242/jcs.204198 apa: Tejos, R., Rodríguez Furlán, C., Adamowski, M., Sauer, M., Norambuena, L., & Friml, J. (2018). PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana. Journal of Cell Science. Company of Biologists. https://doi.org/10.1242/jcs.204198 chicago: Tejos, Ricardo, Cecilia Rodríguez Furlán, Maciek Adamowski, Michael Sauer, Lorena Norambuena, and Jiří Friml. “PATELLINS Are Regulators of Auxin Mediated PIN1 Relocation and Plant Development in Arabidopsis Thaliana.” Journal of Cell Science. Company of Biologists, 2018. https://doi.org/10.1242/jcs.204198. ieee: R. Tejos, C. Rodríguez Furlán, M. Adamowski, M. Sauer, L. Norambuena, and J. Friml, “PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana,” Journal of Cell Science, vol. 131, no. 2. Company of Biologists, 2018. ista: Tejos R, Rodríguez Furlán C, Adamowski M, Sauer M, Norambuena L, Friml J. 2018. PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana. Journal of Cell Science. 131(2), jcs. 204198. mla: Tejos, Ricardo, et al. “PATELLINS Are Regulators of Auxin Mediated PIN1 Relocation and Plant Development in Arabidopsis Thaliana.” Journal of Cell Science, vol. 131, no. 2, jcs. 204198, Company of Biologists, 2018, doi:10.1242/jcs.204198. short: R. Tejos, C. Rodríguez Furlán, M. Adamowski, M. Sauer, L. Norambuena, J. Friml, Journal of Cell Science 131 (2018). date_created: 2018-12-11T11:49:10Z date_published: 2018-01-29T00:00:00Z date_updated: 2023-09-26T15:47:50Z day: '29' ddc: - '581' department: - _id: JiFr doi: 10.1242/jcs.204198 ec_funded: 1 external_id: isi: - '000424842400019' file: - access_level: open_access checksum: bf156c20a4f117b4b932370d54cbac8c content_type: application/pdf creator: dernst date_created: 2019-04-12T08:46:32Z date_updated: 2020-07-14T12:48:15Z file_id: '6299' file_name: 2017_adamowski_PATELLINS_are.pdf file_size: 14925985 relation: main_file file_date_updated: 2020-07-14T12:48:15Z has_accepted_license: '1' intvolume: ' 131' isi: 1 issue: '2' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Journal of Cell Science publication_identifier: issn: - '00219533' publication_status: published publisher: Company of Biologists publist_id: '6530' pubrep_id: '988' quality_controlled: '1' scopus_import: '1' status: public title: PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 131 year: '2018' ...