--- _id: '9242' abstract: - lang: eng text: In the recent years important experimental advances in resonant electro-optic modulators as high-efficiency sources for coherent frequency combs and as devices for quantum information transfer have been realized, where strong optical and microwave mode coupling were achieved. These features suggest electro-optic-based devices as candidates for entangled optical frequency comb sources. In the present work, I study the generation of entangled optical frequency combs in millimeter-sized resonant electro-optic modulators. These devices profit from the experimentally proven advantages such as nearly constant optical free spectral ranges over several gigahertz, and high optical and microwave quality factors. The generation of frequency multiplexed quantum channels with spectral bandwidth in the MHz range for conservative parameter values paves the way towards novel uses in long-distance hybrid quantum networks, quantum key distribution, enhanced optical metrology, and quantum computing. acknowledgement: "I thank Prof. Shabir Barzanjeh and Dr. Ulrich Vogl for the fruitful discussions.\r\n" article_number: '023708' article_processing_charge: No article_type: original author: - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 citation: ama: Rueda Sanchez AR. Frequency-multiplexed hybrid optical entangled source based on the Pockels effect. Physical Review A. 2021;103(2). doi:10.1103/PhysRevA.103.023708 apa: Rueda Sanchez, A. R. (2021). Frequency-multiplexed hybrid optical entangled source based on the Pockels effect. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.103.023708 chicago: Rueda Sanchez, Alfredo R. “Frequency-Multiplexed Hybrid Optical Entangled Source Based on the Pockels Effect.” Physical Review A. American Physical Society, 2021. https://doi.org/10.1103/PhysRevA.103.023708. ieee: A. R. Rueda Sanchez, “Frequency-multiplexed hybrid optical entangled source based on the Pockels effect,” Physical Review A, vol. 103, no. 2. American Physical Society, 2021. ista: Rueda Sanchez AR. 2021. Frequency-multiplexed hybrid optical entangled source based on the Pockels effect. Physical Review A. 103(2), 023708. mla: Rueda Sanchez, Alfredo R. “Frequency-Multiplexed Hybrid Optical Entangled Source Based on the Pockels Effect.” Physical Review A, vol. 103, no. 2, 023708, American Physical Society, 2021, doi:10.1103/PhysRevA.103.023708. short: A.R. Rueda Sanchez, Physical Review A 103 (2021). date_created: 2021-03-14T23:01:33Z date_published: 2021-02-11T00:00:00Z date_updated: 2023-08-07T14:11:18Z day: '11' department: - _id: JoFi doi: 10.1103/PhysRevA.103.023708 external_id: arxiv: - '2010.05356' isi: - '000617037900013' intvolume: ' 103' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2010.05356 month: '02' oa: 1 oa_version: Preprint publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Frequency-multiplexed hybrid optical entangled source based on the Pockels effect type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 103 year: '2021' ...