--- _id: '9410' abstract: - lang: eng text: Antibiotic concentrations vary dramatically in the body and the environment. Hence, understanding the dynamics of resistance evolution along antibiotic concentration gradients is critical for predicting and slowing the emergence and spread of resistance. While it has been shown that increasing the concentration of an antibiotic slows resistance evolution, how adaptation to one antibiotic concentration correlates with fitness at other points along the gradient has not received much attention. Here, we selected populations of Escherichia coli at several points along a concentration gradient for three different antibiotics, asking how rapidly resistance evolved and whether populations became specialized to the antibiotic concentration they were selected on. Populations selected at higher concentrations evolved resistance more slowly but exhibited equal or higher fitness across the whole gradient. Populations selected at lower concentrations evolved resistance rapidly, but overall fitness in the presence of antibiotics was lower. However, these populations readily adapted to higher concentrations upon subsequent selection. Our results indicate that resistance management strategies must account not only for the rates of resistance evolution but also for the fitness of evolved strains. acknowledgement: We would like to thank Martin Ackermann, Camilo Barbosa, Nick Barton, Jonathan Bollback, Sebastian Bonhoeffer, Nick Colegrave, Calin Guet, Alex Hall, Sally Otto, Tiago Paixao, Srdjan Sarikas, Hinrich Schulenburg, Marjon de Vos and Michael Whitlock for insightful support. article_number: '20200913' article_processing_charge: No author: - first_name: Mato full_name: Lagator, Mato id: 345D25EC-F248-11E8-B48F-1D18A9856A87 last_name: Lagator - first_name: Hildegard full_name: Uecker, Hildegard id: 2DB8F68A-F248-11E8-B48F-1D18A9856A87 last_name: Uecker orcid: 0000-0001-9435-2813 - first_name: Paul full_name: Neve, Paul last_name: Neve citation: ama: Lagator M, Uecker H, Neve P. Adaptation at different points along antibiotic concentration gradients. Biology letters. 2021;17(5). doi:10.1098/rsbl.2020.0913 apa: Lagator, M., Uecker, H., & Neve, P. (2021). Adaptation at different points along antibiotic concentration gradients. Biology Letters. Royal Society of London. https://doi.org/10.1098/rsbl.2020.0913 chicago: Lagator, Mato, Hildegard Uecker, and Paul Neve. “Adaptation at Different Points along Antibiotic Concentration Gradients.” Biology Letters. Royal Society of London, 2021. https://doi.org/10.1098/rsbl.2020.0913. ieee: M. Lagator, H. Uecker, and P. Neve, “Adaptation at different points along antibiotic concentration gradients,” Biology letters, vol. 17, no. 5. Royal Society of London, 2021. ista: Lagator M, Uecker H, Neve P. 2021. Adaptation at different points along antibiotic concentration gradients. Biology letters. 17(5), 20200913. mla: Lagator, Mato, et al. “Adaptation at Different Points along Antibiotic Concentration Gradients.” Biology Letters, vol. 17, no. 5, 20200913, Royal Society of London, 2021, doi:10.1098/rsbl.2020.0913. short: M. Lagator, H. Uecker, P. Neve, Biology Letters 17 (2021). date_created: 2021-05-23T22:01:43Z date_published: 2021-05-12T00:00:00Z date_updated: 2023-08-08T13:44:35Z day: '12' ddc: - '570' department: - _id: NiBa doi: 10.1098/rsbl.2020.0913 ec_funded: 1 external_id: isi: - '000651501400001' pmid: - ' 33975485' file: - access_level: open_access checksum: 9c13c1f5af7609c97c741f11d293188a content_type: application/pdf creator: kschuh date_created: 2021-05-25T14:09:03Z date_updated: 2021-05-25T14:09:03Z file_id: '9425' file_name: 2021_BiologyLetters_Lagator.pdf file_size: 726759 relation: main_file success: 1 file_date_updated: 2021-05-25T14:09:03Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '5' language: - iso: eng month: '05' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Biology letters publication_identifier: eissn: - 1744957X publication_status: published publisher: Royal Society of London quality_controlled: '1' scopus_import: '1' status: public title: Adaptation at different points along antibiotic concentration gradients tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2021' ...