{"article_number":"15","article_processing_charge":"Yes (via OA deal)","date_published":"2021-04-01T00:00:00Z","status":"public","language":[{"iso":"eng"}],"month":"04","citation":{"apa":"Edelsbrunner, H., Nikitenko, A., & Osang, G. F. (2021). A step in the Delaunay mosaic of order k. Journal of Geometry. Springer Nature. https://doi.org/10.1007/s00022-021-00577-4","chicago":"Edelsbrunner, Herbert, Anton Nikitenko, and Georg F Osang. “A Step in the Delaunay Mosaic of Order K.” Journal of Geometry. Springer Nature, 2021. https://doi.org/10.1007/s00022-021-00577-4.","ista":"Edelsbrunner H, Nikitenko A, Osang GF. 2021. A step in the Delaunay mosaic of order k. Journal of Geometry. 112(1), 15.","short":"H. Edelsbrunner, A. Nikitenko, G.F. Osang, Journal of Geometry 112 (2021).","mla":"Edelsbrunner, Herbert, et al. “A Step in the Delaunay Mosaic of Order K.” Journal of Geometry, vol. 112, no. 1, 15, Springer Nature, 2021, doi:10.1007/s00022-021-00577-4.","ama":"Edelsbrunner H, Nikitenko A, Osang GF. A step in the Delaunay mosaic of order k. Journal of Geometry. 2021;112(1). doi:10.1007/s00022-021-00577-4","ieee":"H. Edelsbrunner, A. Nikitenko, and G. F. Osang, “A step in the Delaunay mosaic of order k,” Journal of Geometry, vol. 112, no. 1. Springer Nature, 2021."},"intvolume":" 112","file":[{"file_name":"2021_Geometry_Edelsbrunner.pdf","date_created":"2021-06-11T13:16:26Z","checksum":"e52a832f1def52a2b23d21bcc09e646f","file_id":"9544","relation":"main_file","success":1,"date_updated":"2021-06-11T13:16:26Z","access_level":"open_access","file_size":694706,"creator":"kschuh","content_type":"application/pdf"}],"year":"2021","date_created":"2021-06-06T22:01:29Z","article_type":"original","author":[{"last_name":"Edelsbrunner","id":"3FB178DA-F248-11E8-B48F-1D18A9856A87","full_name":"Edelsbrunner, Herbert","orcid":"0000-0002-9823-6833","first_name":"Herbert"},{"last_name":"Nikitenko","id":"3E4FF1BA-F248-11E8-B48F-1D18A9856A87","full_name":"Nikitenko, Anton","first_name":"Anton"},{"id":"464B40D6-F248-11E8-B48F-1D18A9856A87","last_name":"Osang","full_name":"Osang, Georg F","first_name":"Georg F"}],"publication_status":"published","doi":"10.1007/s00022-021-00577-4","day":"01","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","issue":"1","tmp":{"short":"CC BY (4.0)","image":"/images/cc_by.png","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)"},"scopus_import":"1","publication_identifier":{"issn":["00472468"],"eissn":["14208997"]},"_id":"9465","volume":112,"publisher":"Springer Nature","file_date_updated":"2021-06-11T13:16:26Z","quality_controlled":"1","department":[{"_id":"HeEd"}],"type":"journal_article","title":"A step in the Delaunay mosaic of order k","ddc":["510"],"has_accepted_license":"1","oa":1,"abstract":[{"text":"Given a locally finite set 𝑋⊆ℝ𝑑 and an integer 𝑘≥0, we consider the function 𝐰𝑘:Del𝑘(𝑋)→ℝ on the dual of the order-k Voronoi tessellation, whose sublevel sets generalize the notion of alpha shapes from order-1 to order-k (Edelsbrunner et al. in IEEE Trans Inf Theory IT-29:551–559, 1983; Krasnoshchekov and Polishchuk in Inf Process Lett 114:76–83, 2014). While this function is not necessarily generalized discrete Morse, in the sense of Forman (Adv Math 134:90–145, 1998) and Freij (Discrete Math 309:3821–3829, 2009), we prove that it satisfies similar properties so that its increments can be meaningfully classified into critical and non-critical steps. This result extends to the case of weighted points and sheds light on k-fold covers with balls in Euclidean space.","lang":"eng"}],"date_updated":"2022-05-12T11:41:45Z","oa_version":"Published Version","publication":"Journal of Geometry"}