--- _id: '9473' abstract: - lang: eng text: Cytosine DNA methylation regulates the expression of eukaryotic genes and transposons. Methylation is copied by methyltransferases after DNA replication, which results in faithful transmission of methylation patterns during cell division and, at least in flowering plants, across generations. Transgenerational inheritance is mediated by a small group of cells that includes gametes and their progenitors. However, methylation is usually analyzed in somatic tissues that do not contribute to the next generation, and the mechanisms of transgenerational inheritance are inferred from such studies. To gain a better understanding of how DNA methylation is inherited, we analyzed purified Arabidopsis thaliana sperm and vegetative cells-the cell types that comprise pollen-with mutations in the DRM, CMT2, and CMT3 methyltransferases. We find that DNA methylation dependency on these enzymes is similar in sperm, vegetative cells, and somatic tissues, although DRM activity extends into heterochromatin in vegetative cells, likely reflecting transcription of heterochromatic transposons in this cell type. We also show that lack of histone H1, which elevates heterochromatic DNA methylation in somatic tissues, does not have this effect in pollen. Instead, levels of CG methylation in wild-type sperm and vegetative cells, as well as in wild-type microspores from which both pollen cell types originate, are substantially higher than in wild-type somatic tissues and similar to those of H1-depleted roots. Our results demonstrate that the mechanisms of methylation maintenance are similar between pollen and somatic cells, but the efficiency of CG methylation is higher in pollen, allowing methylation patterns to be accurately inherited across generations. article_processing_charge: No article_type: original author: - first_name: Ping-Hung full_name: Hsieh, Ping-Hung last_name: Hsieh - first_name: Shengbo full_name: He, Shengbo last_name: He - first_name: Toby full_name: Buttress, Toby last_name: Buttress - first_name: Hongbo full_name: Gao, Hongbo last_name: Gao - first_name: Matthew full_name: Couchman, Matthew last_name: Couchman - first_name: Robert L. full_name: Fischer, Robert L. last_name: Fischer - first_name: Daniel full_name: Zilberman, Daniel id: 6973db13-dd5f-11ea-814e-b3e5455e9ed1 last_name: Zilberman orcid: 0000-0002-0123-8649 - first_name: Xiaoqi full_name: Feng, Xiaoqi id: e0164712-22ee-11ed-b12a-d80fcdf35958 last_name: Feng orcid: 0000-0002-4008-1234 citation: ama: Hsieh P-H, He S, Buttress T, et al. Arabidopsis male sexual lineage exhibits more robust maintenance of CG methylation than somatic tissues. Proceedings of the National Academy of Sciences. 2016;113(52):15132-15137. doi:10.1073/pnas.1619074114 apa: Hsieh, P.-H., He, S., Buttress, T., Gao, H., Couchman, M., Fischer, R. L., … Feng, X. (2016). Arabidopsis male sexual lineage exhibits more robust maintenance of CG methylation than somatic tissues. Proceedings of the National Academy of Sciences. National Academy of Sciences. https://doi.org/10.1073/pnas.1619074114 chicago: Hsieh, Ping-Hung, Shengbo He, Toby Buttress, Hongbo Gao, Matthew Couchman, Robert L. Fischer, Daniel Zilberman, and Xiaoqi Feng. “Arabidopsis Male Sexual Lineage Exhibits More Robust Maintenance of CG Methylation than Somatic Tissues.” Proceedings of the National Academy of Sciences. National Academy of Sciences, 2016. https://doi.org/10.1073/pnas.1619074114. ieee: P.-H. Hsieh et al., “Arabidopsis male sexual lineage exhibits more robust maintenance of CG methylation than somatic tissues,” Proceedings of the National Academy of Sciences, vol. 113, no. 52. National Academy of Sciences, pp. 15132–15137, 2016. ista: Hsieh P-H, He S, Buttress T, Gao H, Couchman M, Fischer RL, Zilberman D, Feng X. 2016. Arabidopsis male sexual lineage exhibits more robust maintenance of CG methylation than somatic tissues. Proceedings of the National Academy of Sciences. 113(52), 15132–15137. mla: Hsieh, Ping-Hung, et al. “Arabidopsis Male Sexual Lineage Exhibits More Robust Maintenance of CG Methylation than Somatic Tissues.” Proceedings of the National Academy of Sciences, vol. 113, no. 52, National Academy of Sciences, 2016, pp. 15132–37, doi:10.1073/pnas.1619074114. short: P.-H. Hsieh, S. He, T. Buttress, H. Gao, M. Couchman, R.L. Fischer, D. Zilberman, X. Feng, Proceedings of the National Academy of Sciences 113 (2016) 15132–15137. date_created: 2021-06-07T06:21:39Z date_published: 2016-12-27T00:00:00Z date_updated: 2023-05-08T11:00:40Z day: '27' department: - _id: DaZi - _id: XiFe doi: 10.1073/pnas.1619074114 extern: '1' external_id: pmid: - '27956643' intvolume: ' 113' issue: '52' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1073/pnas.1619074114 month: '12' oa: 1 oa_version: Published Version page: 15132-15137 pmid: 1 publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Arabidopsis male sexual lineage exhibits more robust maintenance of CG methylation than somatic tissues type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 113 year: '2016' ...