{"oa":1,"language":[{"iso":"eng"}],"publisher":"Cell Press","volume":35,"year":"2021","day":"22","external_id":{"isi":["000664463600016"]},"publication_status":"published","file":[{"file_id":"9613","relation":"main_file","creator":"asandaue","file_name":"2021_CellReports_Contreras.pdf","access_level":"open_access","date_updated":"2021-06-28T14:06:24Z","checksum":"d49520fdcbbb5c2f883bddb67cee5d77","file_size":7653149,"date_created":"2021-06-28T14:06:24Z","content_type":"application/pdf","success":1}],"acknowledgement":"We thank the Bioimaging, Life Science, and Pre-Clinical Facilities at IST Austria; M.P. Postiglione, C. Simbriger, K. Valoskova, C. Schwayer, T. Hussain, M. Pieber, and V. Wimmer for initial experiments, technical support, and/or assistance; R. Shigemoto for sharing iv (Dnah11 mutant) mice; and M. Sixt and all members of the Hippenmeyer lab for discussion. This work was supported by National Institutes of Health grants ( R01-NS050580 to L.L. and F32MH096361 to L.A.S.). L.L. is an investigator of HHMI. N.A. received support from FWF Firnberg-Programm ( T 1031 ). A.H.H. is a recipient of a DOC Fellowship (24812) of the Austrian Academy of Sciences . This work also received support from IST Austria institutional funds , FWF SFB F78 to S.H., the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme ( FP7/2007-2013 ) under REA grant agreement no 618444 to S.H., and the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 725780 LinPro ) to S.H.","issue":"12","doi":"10.1016/j.celrep.2021.109274","_id":"9603","publication":"Cell Reports","article_number":"109274","date_updated":"2023-08-10T13:55:00Z","user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","has_accepted_license":"1","article_processing_charge":"No","article_type":"original","oa_version":"Published Version","date_created":"2021-06-27T22:01:48Z","file_date_updated":"2021-06-28T14:06:24Z","date_published":"2021-06-22T00:00:00Z","month":"06","type":"journal_article","publication_identifier":{"eissn":["22111247"]},"ddc":["570"],"title":"A genome-wide library of MADM mice for single-cell genetic mosaic analysis","acknowledged_ssus":[{"_id":"Bio"},{"_id":"LifeSc"},{"_id":"PreCl"}],"status":"public","ec_funded":1,"department":[{"_id":"SiHi"},{"_id":"LoSw"},{"_id":"PreCl"}],"author":[{"first_name":"Ximena","id":"475990FE-F248-11E8-B48F-1D18A9856A87","full_name":"Contreras, Ximena","last_name":"Contreras"},{"first_name":"Nicole","orcid":"0000-0002-3183-8207","id":"4CD6AAC6-F248-11E8-B48F-1D18A9856A87","full_name":"Amberg, Nicole","last_name":"Amberg"},{"first_name":"Amarbayasgalan","id":"70ADC922-B424-11E9-99E3-BA18E6697425","full_name":"Davaatseren, Amarbayasgalan","last_name":"Davaatseren"},{"first_name":"Andi H","id":"38853E16-F248-11E8-B48F-1D18A9856A87","full_name":"Hansen, Andi H","last_name":"Hansen"},{"last_name":"Sonntag","full_name":"Sonntag, Johanna","id":"32FE7D7C-F248-11E8-B48F-1D18A9856A87","first_name":"Johanna"},{"first_name":"Lill","full_name":"Andersen, Lill","last_name":"Andersen"},{"full_name":"Bernthaler, Tina","last_name":"Bernthaler","first_name":"Tina"},{"first_name":"Carmen","id":"36BCB99C-F248-11E8-B48F-1D18A9856A87","full_name":"Streicher, Carmen","last_name":"Streicher"},{"last_name":"Heger","full_name":"Heger, Anna-Magdalena","id":"4B76FFD2-F248-11E8-B48F-1D18A9856A87","first_name":"Anna-Magdalena"},{"last_name":"Johnson","full_name":"Johnson, Randy L.","first_name":"Randy L."},{"full_name":"Schwarz, Lindsay A.","last_name":"Schwarz","first_name":"Lindsay A."},{"full_name":"Luo, Liqun","last_name":"Luo","first_name":"Liqun"},{"full_name":"Rülicke, Thomas","last_name":"Rülicke","first_name":"Thomas"},{"full_name":"Hippenmeyer, Simon","last_name":"Hippenmeyer","first_name":"Simon","orcid":"0000-0003-2279-1061","id":"37B36620-F248-11E8-B48F-1D18A9856A87"}],"citation":{"short":"X. Contreras, N. Amberg, A. Davaatseren, A.H. Hansen, J. Sonntag, L. Andersen, T. Bernthaler, C. Streicher, A.-M. Heger, R.L. Johnson, L.A. Schwarz, L. Luo, T. Rülicke, S. Hippenmeyer, Cell Reports 35 (2021).","ama":"Contreras X, Amberg N, Davaatseren A, et al. A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Reports. 2021;35(12). doi:10.1016/j.celrep.2021.109274","ista":"Contreras X, Amberg N, Davaatseren A, Hansen AH, Sonntag J, Andersen L, Bernthaler T, Streicher C, Heger A-M, Johnson RL, Schwarz LA, Luo L, Rülicke T, Hippenmeyer S. 2021. A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Reports. 35(12), 109274.","ieee":"X. Contreras et al., “A genome-wide library of MADM mice for single-cell genetic mosaic analysis,” Cell Reports, vol. 35, no. 12. Cell Press, 2021.","apa":"Contreras, X., Amberg, N., Davaatseren, A., Hansen, A. H., Sonntag, J., Andersen, L., … Hippenmeyer, S. (2021). A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Reports. Cell Press. https://doi.org/10.1016/j.celrep.2021.109274","mla":"Contreras, Ximena, et al. “A Genome-Wide Library of MADM Mice for Single-Cell Genetic Mosaic Analysis.” Cell Reports, vol. 35, no. 12, 109274, Cell Press, 2021, doi:10.1016/j.celrep.2021.109274.","chicago":"Contreras, Ximena, Nicole Amberg, Amarbayasgalan Davaatseren, Andi H Hansen, Johanna Sonntag, Lill Andersen, Tina Bernthaler, et al. “A Genome-Wide Library of MADM Mice for Single-Cell Genetic Mosaic Analysis.” Cell Reports. Cell Press, 2021. https://doi.org/10.1016/j.celrep.2021.109274."},"intvolume":" 35","tmp":{"name":"Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)","short":"CC BY-NC-ND (4.0)","image":"/images/cc_by_nc_nd.png","legal_code_url":"https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode"},"isi":1,"abstract":[{"text":"Mosaic analysis with double markers (MADM) offers one approach to visualize and concomitantly manipulate genetically defined cells in mice with single-cell resolution. MADM applications include the analysis of lineage, single-cell morphology and physiology, genomic imprinting phenotypes, and dissection of cell-autonomous gene functions in vivo in health and disease. Yet, MADM can only be applied to <25% of all mouse genes on select chromosomes to date. To overcome this limitation, we generate transgenic mice with knocked-in MADM cassettes near the centromeres of all 19 autosomes and validate their use across organs. With this resource, >96% of the entire mouse genome can now be subjected to single-cell genetic mosaic analysis. Beyond a proof of principle, we apply our MADM library to systematically trace sister chromatid segregation in distinct mitotic cell lineages. We find striking chromosome-specific biases in segregation patterns, reflecting a putative mechanism for the asymmetric segregation of genetic determinants in somatic stem cell division.","lang":"eng"}],"project":[{"grant_number":"24812","_id":"2625A13E-B435-11E9-9278-68D0E5697425","name":"Molecular Mechanisms of Radial Neuronal Migration"},{"grant_number":"618444","_id":"25D61E48-B435-11E9-9278-68D0E5697425","call_identifier":"FP7","name":"Molecular Mechanisms of Cerebral Cortex Development"},{"grant_number":"725780","_id":"260018B0-B435-11E9-9278-68D0E5697425","name":"Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development","call_identifier":"H2020"}],"quality_controlled":"1","scopus_import":"1","related_material":{"link":[{"description":"News on IST Homepage","url":"https://ist.ac.at/en/news/boost-for-mouse-genetic-analysis/","relation":"press_release"}]}}