{"publication":"eLife","article_number":"e66483","date_created":"2021-09-12T22:01:23Z","file":[{"content_type":"application/pdf","date_updated":"2022-05-13T08:03:37Z","file_size":9010446,"date_created":"2022-05-13T08:03:37Z","file_name":"2021_eLife_Pulgar.pdf","relation":"main_file","file_id":"11371","access_level":"open_access","success":1,"checksum":"a3f82b0499cc822ac1eab48a01f3f57e","creator":"dernst"}],"year":"2021","ddc":["570"],"article_processing_charge":"Yes","date_published":"2021-08-27T00:00:00Z","file_date_updated":"2022-05-13T08:03:37Z","language":[{"iso":"eng"}],"author":[{"last_name":"Pulgar","first_name":"Eduardo","full_name":"Pulgar, Eduardo"},{"first_name":"Cornelia","orcid":"0000-0001-5130-2226","full_name":"Schwayer, Cornelia","id":"3436488C-F248-11E8-B48F-1D18A9856A87","last_name":"Schwayer"},{"full_name":"Guerrero, Néstor","first_name":"Néstor","last_name":"Guerrero"},{"last_name":"López","first_name":"Loreto","full_name":"López, Loreto"},{"last_name":"Márquez","first_name":"Susana","full_name":"Márquez, Susana"},{"full_name":"Härtel, Steffen","first_name":"Steffen","last_name":"Härtel"},{"last_name":"Soto","full_name":"Soto, Rodrigo","first_name":"Rodrigo"},{"full_name":"Heisenberg, Carl Philipp","first_name":"Carl Philipp","last_name":"Heisenberg"},{"last_name":"Concha","full_name":"Concha, Miguel L.","first_name":"Miguel L."}],"user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","department":[{"_id":"CaHe"}],"publisher":"eLife Sciences Publications","scopus_import":"1","oa":1,"publication_status":"published","_id":"9999","doi":"10.7554/eLife.66483","publication_identifier":{"eissn":["2050-084X"]},"month":"08","title":"Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism","oa_version":"Published Version","keyword":["cell delamination","apical constriction","dragging","mechanical forces","collective 18 locomotion","dorsal forerunner cells","zebrafish"],"citation":{"short":"E. Pulgar, C. Schwayer, N. Guerrero, L. López, S. Márquez, S. Härtel, R. Soto, C.P. Heisenberg, M.L. Concha, ELife 10 (2021).","apa":"Pulgar, E., Schwayer, C., Guerrero, N., López, L., Márquez, S., Härtel, S., … Concha, M. L. (2021). Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.66483","ista":"Pulgar E, Schwayer C, Guerrero N, López L, Márquez S, Härtel S, Soto R, Heisenberg CP, Concha ML. 2021. Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism. eLife. 10, e66483.","ama":"Pulgar E, Schwayer C, Guerrero N, et al. Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism. eLife. 2021;10. doi:10.7554/eLife.66483","mla":"Pulgar, Eduardo, et al. “Apical Contacts Stemming from Incomplete Delamination Guide Progenitor Cell Allocation through a Dragging Mechanism.” ELife, vol. 10, e66483, eLife Sciences Publications, 2021, doi:10.7554/eLife.66483.","chicago":"Pulgar, Eduardo, Cornelia Schwayer, Néstor Guerrero, Loreto López, Susana Márquez, Steffen Härtel, Rodrigo Soto, Carl Philipp Heisenberg, and Miguel L. Concha. “Apical Contacts Stemming from Incomplete Delamination Guide Progenitor Cell Allocation through a Dragging Mechanism.” ELife. eLife Sciences Publications, 2021. https://doi.org/10.7554/eLife.66483.","ieee":"E. Pulgar et al., “Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism,” eLife, vol. 10. eLife Sciences Publications, 2021."},"type":"journal_article","intvolume":" 10","tmp":{"name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","image":"/images/cc_by.png"},"date_updated":"2023-08-14T06:53:33Z","abstract":[{"lang":"eng","text":"The developmental strategies used by progenitor cells to endure a safe journey from their induction place towards the site of terminal differentiation are still poorly understood. Here we uncovered a progenitor cell allocation mechanism that stems from an incomplete process of epithelial delamination that allows progenitors to coordinate their movement with adjacent extra-embryonic tissues. Progenitors of the zebrafish laterality organ originate from the surface epithelial enveloping layer by an apical constriction process of cell delamination. During this process, progenitors retain long-term apical contacts that enable the epithelial layer to pull a subset of progenitors along their way towards the vegetal pole. The remaining delaminated progenitors follow apically-attached progenitors’ movement by a co-attraction mechanism, avoiding sequestration by the adjacent endoderm, ensuring their fate and collective allocation at the differentiation site. Thus, we reveal that incomplete delamination serves as a cellular platform for coordinated tissue movements during development. Impact Statement: Incomplete delamination serves as a cellular platform for coordinated tissue movements during development, guiding newly formed progenitor cell groups to the differentiation site."}],"status":"public","day":"27","quality_controlled":"1","ec_funded":1,"project":[{"_id":"260F1432-B435-11E9-9278-68D0E5697425","name":"Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation","call_identifier":"H2020","grant_number":"742573"}],"volume":10,"pmid":1,"isi":1,"has_accepted_license":"1","external_id":{"pmid":["34448451"],"isi":["000700428500001"]},"article_type":"original"}