{"quality_controlled":"1","scopus_import":"1","file":[{"file_size":9010446,"date_created":"2022-05-13T08:03:37Z","relation":"main_file","file_id":"11371","file_name":"2021_eLife_Pulgar.pdf","creator":"dernst","content_type":"application/pdf","success":1,"date_updated":"2022-05-13T08:03:37Z","checksum":"a3f82b0499cc822ac1eab48a01f3f57e","access_level":"open_access"}],"publication":"eLife","intvolume":" 10","article_processing_charge":"Yes","department":[{"_id":"CaHe"}],"publication_identifier":{"eissn":["2050-084X"]},"month":"08","isi":1,"author":[{"full_name":"Pulgar, Eduardo","last_name":"Pulgar","first_name":"Eduardo"},{"orcid":"0000-0001-5130-2226","first_name":"Cornelia","id":"3436488C-F248-11E8-B48F-1D18A9856A87","last_name":"Schwayer","full_name":"Schwayer, Cornelia"},{"full_name":"Guerrero, Néstor","first_name":"Néstor","last_name":"Guerrero"},{"full_name":"López, Loreto","first_name":"Loreto","last_name":"López"},{"full_name":"Márquez, Susana","last_name":"Márquez","first_name":"Susana"},{"last_name":"Härtel","first_name":"Steffen","full_name":"Härtel, Steffen"},{"last_name":"Soto","first_name":"Rodrigo","full_name":"Soto, Rodrigo"},{"full_name":"Heisenberg, Carl Philipp","first_name":"Carl Philipp","last_name":"Heisenberg"},{"full_name":"Concha, Miguel L.","first_name":"Miguel L.","last_name":"Concha"}],"publisher":"eLife Sciences Publications","article_number":"e66483","tmp":{"short":"CC BY (4.0)","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","image":"/images/cc_by.png","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode"},"abstract":[{"text":"The developmental strategies used by progenitor cells to endure a safe journey from their induction place towards the site of terminal differentiation are still poorly understood. Here we uncovered a progenitor cell allocation mechanism that stems from an incomplete process of epithelial delamination that allows progenitors to coordinate their movement with adjacent extra-embryonic tissues. Progenitors of the zebrafish laterality organ originate from the surface epithelial enveloping layer by an apical constriction process of cell delamination. During this process, progenitors retain long-term apical contacts that enable the epithelial layer to pull a subset of progenitors along their way towards the vegetal pole. The remaining delaminated progenitors follow apically-attached progenitors’ movement by a co-attraction mechanism, avoiding sequestration by the adjacent endoderm, ensuring their fate and collective allocation at the differentiation site. Thus, we reveal that incomplete delamination serves as a cellular platform for coordinated tissue movements during development. Impact Statement: Incomplete delamination serves as a cellular platform for coordinated tissue movements during development, guiding newly formed progenitor cell groups to the differentiation site.","lang":"eng"}],"oa":1,"ec_funded":1,"has_accepted_license":"1","project":[{"name":"Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation","_id":"260F1432-B435-11E9-9278-68D0E5697425","call_identifier":"H2020","grant_number":"742573"}],"citation":{"ista":"Pulgar E, Schwayer C, Guerrero N, López L, Márquez S, Härtel S, Soto R, Heisenberg CP, Concha ML. 2021. Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism. eLife. 10, e66483.","short":"E. Pulgar, C. Schwayer, N. Guerrero, L. López, S. Márquez, S. Härtel, R. Soto, C.P. Heisenberg, M.L. Concha, ELife 10 (2021).","apa":"Pulgar, E., Schwayer, C., Guerrero, N., López, L., Márquez, S., Härtel, S., … Concha, M. L. (2021). Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.66483","mla":"Pulgar, Eduardo, et al. “Apical Contacts Stemming from Incomplete Delamination Guide Progenitor Cell Allocation through a Dragging Mechanism.” ELife, vol. 10, e66483, eLife Sciences Publications, 2021, doi:10.7554/eLife.66483.","ieee":"E. Pulgar et al., “Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism,” eLife, vol. 10. eLife Sciences Publications, 2021.","chicago":"Pulgar, Eduardo, Cornelia Schwayer, Néstor Guerrero, Loreto López, Susana Márquez, Steffen Härtel, Rodrigo Soto, Carl Philipp Heisenberg, and Miguel L. Concha. “Apical Contacts Stemming from Incomplete Delamination Guide Progenitor Cell Allocation through a Dragging Mechanism.” ELife. eLife Sciences Publications, 2021. https://doi.org/10.7554/eLife.66483.","ama":"Pulgar E, Schwayer C, Guerrero N, et al. Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism. eLife. 2021;10. doi:10.7554/eLife.66483"},"title":"Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism","pmid":1,"external_id":{"pmid":["34448451"],"isi":["000700428500001"]},"user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","_id":"9999","status":"public","date_updated":"2023-08-14T06:53:33Z","year":"2021","type":"journal_article","ddc":["570"],"file_date_updated":"2022-05-13T08:03:37Z","oa_version":"Published Version","volume":10,"article_type":"original","date_published":"2021-08-27T00:00:00Z","publication_status":"published","day":"27","date_created":"2021-09-12T22:01:23Z","license":"https://creativecommons.org/licenses/by/4.0/","doi":"10.7554/eLife.66483","keyword":["cell delamination","apical constriction","dragging","mechanical forces","collective 18 locomotion","dorsal forerunner cells","zebrafish"],"language":[{"iso":"eng"}]}