Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
71 Publications
2025 | Epub ahead of print | Journal Article | IST-REx-ID: 19065 |

Fornasier M, Klock T, Mondelli M, Rauchensteiner M. Efficient identification of wide shallow neural networks with biases. Applied and Computational Harmonic Analysis. 2025;77. doi:10.1016/j.acha.2025.101749
[Published Version]
View
| DOI
| Download Published Version (ext.)
2025 | Published | Conference Paper | IST-REx-ID: 19281 |

Resch, Nicolas, Tight bounds on list-decodable and list-recoverable zero-rate codes. 16th Innovations in Theoretical Computer Science Conference 325. 2025
[Published Version]
View
| Files available
| DOI
| arXiv
2025 | Published | Journal Article | IST-REx-ID: 18986 |

Barbier J, Camilli F, Xu Y, Mondelli M. Information limits and Thouless-Anderson-Palmer equations for spiked matrix models with structured noise. Physical Review Research. 2025;7. doi:10.1103/PhysRevResearch.7.013081
[Published Version]
View
| Files available
| DOI
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 17893 |

Jin L, Esposito AR, Gastpar M. Properties of the strong data processing constant for Rényi divergence. In: Proceedings of the 2024 IEEE International Symposium on Information Theory. Institute of Electrical and Electronics Engineers; 2024:3178-3183. doi:10.1109/ISIT57864.2024.10619367
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 17894
Esposito AR, Gastpar M, Issa I. Variational characterizations of Sibson’s α-mutual information. In: Proceedings of the 2024 IEEE International Symposium on Information Theory . Institute of Electrical and Electronics Engineers; 2024:2110-2115. doi:10.1109/ISIT57864.2024.10619378
View
| DOI
2024 | Published | Conference Paper | IST-REx-ID: 17895
Dey BK, Jaggi S, Langberg M, Sarwate AD, Zhang Y. Computationally efficient codes for strongly Dobrushin-Stambler nonsymmetrizable oblivious AVCs. In: Proceedings of the 2024 IEEE International Symposium on Information Theory . Institute of Electrical and Electronics Engineers; 2024:1586-1591. doi:10.1109/ISIT57864.2024.10619362
View
| DOI
2024 | Published | Journal Article | IST-REx-ID: 14665 |

Zhang Y, Vatedka S. Multiple packing: Lower bounds via error exponents. IEEE Transactions on Information Theory. 2024;70(2):1008-1039. doi:10.1109/TIT.2023.3334032
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2024 | Published | Journal Article | IST-REx-ID: 18652
Dey BK, Jaggi S, Langberg M, Sarwate AD, Zhang Y. Codes for adversaries: Between worst-case and average-case jamming. Foundations and Trends in Communications and Information Theory. 2024;21(3-4):300-588. doi:10.1561/0100000112
View
| DOI
2024 | Published | Journal Article | IST-REx-ID: 17330 |

Resch N, Yuan C, Zhang Y. Zero-rate thresholds and new capacity bounds for list-decoding and list-recovery. IEEE Transactions on Information Theory. 2024;70(9):6211-6238. doi:10.1109/TIT.2024.3430842
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 19518 |

Wu, Diyuan, The iterative optimal brain surgeon: Faster sparse recovery by leveraging second-order information. 38th Conference on Neural Information Processing Systems 37. 2024
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 18891 |

Súkeník, Peter, Neural collapse versus low-rank bias: Is deep neural collapse really optimal?. 38th Annual Conference on Neural Information Processing Systems 37. 2024
[Published Version]
View
| Files available
2024 | Published | Conference Paper | IST-REx-ID: 18890 |

Beaglehole, Daniel, Average gradient outer product as a mechanism for deep neural collapse. 38th Annual Conference on Neural Information Processing Systems 37. 2024
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 18973 |

Bombari S, Mondelli M. Towards understanding the word sensitivity of attention layers: A study via random features. In: 41st International Conference on Machine Learning. Vol 235. ML Research Press; 2024:4300-4328.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 18972 |

Bombari S, Mondelli M. How spurious features are memorized: Precise analysis for random and NTK features. In: 41st International Conference on Machine Learning. Vol 235. ML Research Press; 2024:4267-4299.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Journal Article | IST-REx-ID: 15172 |

Esposito AR, Mondelli M. Concentration without independence via information measures. IEEE Transactions on Information Theory. 2024;70(6):3823-3839. doi:10.1109/TIT.2024.3367767
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 17147
Depope A, Mondelli M, Robinson MR. Inference of genetic effects via approximate message passing. In: 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE; 2024:13151-13155. doi:10.1109/ICASSP48485.2024.10447198
View
| DOI
2024 | Published | Conference Paper | IST-REx-ID: 18897 |

Pedrotti F, Maas J, Mondelli M. Improved convergence of score-based diffusion models via prediction-correction. In: Transactions on Machine Learning Research. ; 2024.
[Published Version]
View
| Files available
| arXiv
2024 | Draft | Preprint | IST-REx-ID: 17350 |

Pedrotti F, Maas J, Mondelli M. Improved convergence of score-based diffusion models via prediction-correction. arXiv. doi:10.48550/arXiv.2305.14164
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2024 | Published | Thesis | IST-REx-ID: 17465 |

Shevchenko A. High-dimensional limits in artificial neural networks. 2024. doi:10.15479/at:ista:17465
[Published Version]
View
| Files available
| DOI
2024 | Published | Conference Paper | IST-REx-ID: 17469 |

Kögler K, Shevchenko A, Hassani H, Mondelli M. Compression of structured data with autoencoders: Provable benefit of nonlinearities and depth. In: Proceedings of the 41st International Conference on Machine Learning. Vol 235. ML Research Press; 2024:24964-25015.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv