11 Publications

Mark all

[11]
2024 |Published| Conference Paper | IST-REx-ID: 17456 | OA
L-GreCo: Layerwise-adaptive gradient compression for efficient data-parallel deep learning
I. Markov, K. Alimohammadi, E. Frantar, D.-A. Alistarh, in:, P. Gibbons, G. Pekhimenko, C. De Sa (Eds.), Proceedings of Machine Learning and Systems , Association for Computing Machinery, 2024.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
[10]
2024 |Published| Conference Paper | IST-REx-ID: 18062 | OA
Scaling laws for sparsely-connected foundation models
E. Frantar, C.R. Ruiz, N. Houlsby, D.-A. Alistarh, U. Evci, in:, The Twelfth International Conference on Learning Representations, 2024.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
[9]
2024 |Published| Conference Paper | IST-REx-ID: 18061 | OA
QMoE: Sub-1-bit compression of trillion parameter models
E. Frantar, D.-A. Alistarh, in:, P. Gibbons, G. Pekhimenko, C. De Sa (Eds.), Proceedings of Machine Learning and Systems, 2024.
[Published Version] View | Files available | Download Published Version (ext.)
 
[8]
2024 |Published| Thesis | IST-REx-ID: 17485 | OA
Compressing large neural networks : Algorithms, systems and scaling laws
E. Frantar, Compressing Large Neural Networks : Algorithms, Systems and Scaling Laws, Institute of Science and Technology Austria, 2024.
[Published Version] View | Files available | DOI
 
[7]
2023 |Published| Conference Paper | IST-REx-ID: 17378 | OA
OPTQ: Accurate post-training quantization for generative pre-trained transformers
E. Frantar, S. Ashkboos, T. Hoefler, D.-A. Alistarh, in:, 11th International Conference on Learning Representations , International Conference on Learning Representations, 2023.
[Published Version] View | Files available
 
[6]
2023 |Published| Conference Paper | IST-REx-ID: 14458 | OA
SparseGPT: Massive language models can be accurately pruned in one-shot
E. Frantar, D.-A. Alistarh, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 10323–10337.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
[5]
2022 |Published| Conference Paper | IST-REx-ID: 17088 | OA
The optimal BERT surgeon: Scalable and accurate second-order pruning for large language models
E. Kurtic, D. Campos, T. Nguyen, E. Frantar, M. Kurtz, B. Fineran, M. Goin, D.-A. Alistarh, in:, Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, 2022, pp. 4163–4181.
[Published Version] View | Files available | DOI | arXiv
 
[4]
2022 |Published| Conference Paper | IST-REx-ID: 17059 | OA
SPDY: Accurate pruning with speedup guarantees
E. Frantar, D.-A. Alistarh, in:, 39th International Conference on Machine Learning, ML Research Press, 2022, pp. 6726–6743.
[Published Version] View | Files available | WoS
 
[3]
2022 |Published| Conference Paper | IST-REx-ID: 17087 | OA
Optimal brain compression: A framework for accurate post-training quantization and pruning
E. Frantar, S.P. Singh, D.-A. Alistarh, in:, 36th Conference on Neural Information Processing Systems, ML Research Press, 2022.
[Submitted Version] View | Files available | arXiv
 
[2]
2021 |Published| Conference Paper | IST-REx-ID: 11463 | OA
M-FAC: Efficient matrix-free approximations of second-order information
E. Frantar, E. Kurtic, D.-A. Alistarh, in:, 35th Conference on Neural Information Processing Systems, Curran Associates, 2021, pp. 14873–14886.
[Published Version] View | Download Published Version (ext.) | arXiv
 
[1]
2020 |Published| Conference Paper | IST-REx-ID: 8724 | OA
On the sample complexity of adversarial multi-source PAC learning
N.H. Konstantinov, E. Frantar, D.-A. Alistarh, C. Lampert, in:, Proceedings of the 37th International Conference on Machine Learning, ML Research Press, 2020, pp. 5416–5425.
[Published Version] View | Files available | arXiv
 

Search

Filter Publications

11 Publications

Mark all

[11]
2024 |Published| Conference Paper | IST-REx-ID: 17456 | OA
L-GreCo: Layerwise-adaptive gradient compression for efficient data-parallel deep learning
I. Markov, K. Alimohammadi, E. Frantar, D.-A. Alistarh, in:, P. Gibbons, G. Pekhimenko, C. De Sa (Eds.), Proceedings of Machine Learning and Systems , Association for Computing Machinery, 2024.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
[10]
2024 |Published| Conference Paper | IST-REx-ID: 18062 | OA
Scaling laws for sparsely-connected foundation models
E. Frantar, C.R. Ruiz, N. Houlsby, D.-A. Alistarh, U. Evci, in:, The Twelfth International Conference on Learning Representations, 2024.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
[9]
2024 |Published| Conference Paper | IST-REx-ID: 18061 | OA
QMoE: Sub-1-bit compression of trillion parameter models
E. Frantar, D.-A. Alistarh, in:, P. Gibbons, G. Pekhimenko, C. De Sa (Eds.), Proceedings of Machine Learning and Systems, 2024.
[Published Version] View | Files available | Download Published Version (ext.)
 
[8]
2024 |Published| Thesis | IST-REx-ID: 17485 | OA
Compressing large neural networks : Algorithms, systems and scaling laws
E. Frantar, Compressing Large Neural Networks : Algorithms, Systems and Scaling Laws, Institute of Science and Technology Austria, 2024.
[Published Version] View | Files available | DOI
 
[7]
2023 |Published| Conference Paper | IST-REx-ID: 17378 | OA
OPTQ: Accurate post-training quantization for generative pre-trained transformers
E. Frantar, S. Ashkboos, T. Hoefler, D.-A. Alistarh, in:, 11th International Conference on Learning Representations , International Conference on Learning Representations, 2023.
[Published Version] View | Files available
 
[6]
2023 |Published| Conference Paper | IST-REx-ID: 14458 | OA
SparseGPT: Massive language models can be accurately pruned in one-shot
E. Frantar, D.-A. Alistarh, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 10323–10337.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
[5]
2022 |Published| Conference Paper | IST-REx-ID: 17088 | OA
The optimal BERT surgeon: Scalable and accurate second-order pruning for large language models
E. Kurtic, D. Campos, T. Nguyen, E. Frantar, M. Kurtz, B. Fineran, M. Goin, D.-A. Alistarh, in:, Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, 2022, pp. 4163–4181.
[Published Version] View | Files available | DOI | arXiv
 
[4]
2022 |Published| Conference Paper | IST-REx-ID: 17059 | OA
SPDY: Accurate pruning with speedup guarantees
E. Frantar, D.-A. Alistarh, in:, 39th International Conference on Machine Learning, ML Research Press, 2022, pp. 6726–6743.
[Published Version] View | Files available | WoS
 
[3]
2022 |Published| Conference Paper | IST-REx-ID: 17087 | OA
Optimal brain compression: A framework for accurate post-training quantization and pruning
E. Frantar, S.P. Singh, D.-A. Alistarh, in:, 36th Conference on Neural Information Processing Systems, ML Research Press, 2022.
[Submitted Version] View | Files available | arXiv
 
[2]
2021 |Published| Conference Paper | IST-REx-ID: 11463 | OA
M-FAC: Efficient matrix-free approximations of second-order information
E. Frantar, E. Kurtic, D.-A. Alistarh, in:, 35th Conference on Neural Information Processing Systems, Curran Associates, 2021, pp. 14873–14886.
[Published Version] View | Download Published Version (ext.) | arXiv
 
[1]
2020 |Published| Conference Paper | IST-REx-ID: 8724 | OA
On the sample complexity of adversarial multi-source PAC learning
N.H. Konstantinov, E. Frantar, D.-A. Alistarh, C. Lampert, in:, Proceedings of the 37th International Conference on Machine Learning, ML Research Press, 2020, pp. 5416–5425.
[Published Version] View | Files available | arXiv
 

Search

Filter Publications