Julian L Fischer
Fischer Group
34 Publications
2024 |Published| Journal Article | IST-REx-ID: 17481 |
Fischer, J. L., & Marveggio, A. (2024). Quantitative convergence of the vectorial Allen–Cahn equation towards multiphase mean curvature flow. Annales de l’Institut Henri Poincare C. EMS Press. https://doi.org/10.4171/AIHPC/109
[Published Version]
View
| Files available
| DOI
2024 |Published| Journal Article | IST-REx-ID: 17887 |
Abels, H., Fischer, J. L., & Moser, M. (2024). Approximation of classical two-phase flows of viscous incompressible fluids by a Navier–Stokes/Allen–Cahn system. Archive for Rational Mechanics and Analysis. Springer Nature. https://doi.org/10.1007/s00205-024-02020-9
[Published Version]
View
| Files available
| DOI
| arXiv
2023 |Published| Journal Article | IST-REx-ID: 10550 |
Fellner, K., Fischer, J. L., Kniely, M., & Tang, B. Q. (2023). Global renormalised solutions and equilibration of reaction-diffusion systems with non-linear diffusion. Journal of Nonlinear Science. Springer Nature. https://doi.org/10.1007/s00332-023-09926-w
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2023 |Published| Journal Article | IST-REx-ID: 14661 |
Carioni, M., Fischer, J. L., & Schlömerkemper, A. (2023). External forces in the continuum limit of discrete systems with non-convex interaction potentials: Compactness for a Γ-development. Journal of Convex Analysis. Heldermann Verlag.
[Preprint]
View
| Download Preprint (ext.)
| WoS
| arXiv
2023 |Published| Journal Article | IST-REx-ID: 10551 |
Cornalba, F., & Fischer, J. L. (2023). The Dean-Kawasaki equation and the structure of density fluctuations in systems of diffusing particles. Archive for Rational Mechanics and Analysis. Springer Nature. https://doi.org/10.1007/s00205-023-01903-7
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 |Published| Journal Article | IST-REx-ID: 10548 |
Duerinckx, M., Fischer, J. L., & Gloria, A. (2022). Scaling limit of the homogenization commutator for Gaussian coefficient fields. Annals of Applied Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/21-AAP1705
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 |Published| Journal Article | IST-REx-ID: 10547 |
Fischer, J. L., Hopf, K., Kniely, M., & Mielke, A. (2022). Global existence analysis of energy-reaction-diffusion systems. SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/20M1387237
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 |Published| Journal Article | IST-REx-ID: 12304 |
De Nitti, N., & Fischer, J. L. (2022). Sharp criteria for the waiting time phenomenon in solutions to the thin-film equation. Communications in Partial Differential Equations. Taylor & Francis. https://doi.org/10.1080/03605302.2022.2056702
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 |Submitted| Preprint | IST-REx-ID: 14597 |
Fischer, J. L., & Marveggio, A. (n.d.). Quantitative convergence of the vectorial Allen-Cahn equation towards multiphase mean curvature flow. arXiv. https://doi.org/10.48550/ARXIV.2203.17143
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2021 |Published| Journal Article | IST-REx-ID: 9335 |
Fischer, J. L., & Matthes, D. (2021). The waiting time phenomenon in spatially discretized porous medium and thin film equations. SIAM Journal on Numerical Analysis. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/19M1300017
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2021 |Published| Journal Article | IST-REx-ID: 9352 |
Fischer, J. L., Gallistl, D., & Peterseim, D. (2021). A priori error analysis of a numerical stochastic homogenization method. SIAM Journal on Numerical Analysis. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/19M1308992
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2021 |Published| Journal Article | IST-REx-ID: 10549 |
Fischer, J. L., & Neukamm, S. (2021). Optimal homogenization rates in stochastic homogenization of nonlinear uniformly elliptic equations and systems. Archive for Rational Mechanics and Analysis. Springer Nature. https://doi.org/10.1007/s00205-021-01686-9
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2020 |Published| Journal Article | IST-REx-ID: 8697 |
Fischer, J. L., & Kniely, M. (2020). Variance reduction for effective energies of random lattices in the Thomas-Fermi-von Weizsäcker model. Nonlinearity. IOP Publishing. https://doi.org/10.1088/1361-6544/ab9728
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2020 |Published| Journal Article | IST-REx-ID: 9039 |
Fischer, J. L., Laux, T., & Simon, T. M. (2020). Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies. SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/20M1322182
[Published Version]
View
| Files available
| DOI
| WoS
2020 |Published| Journal Article | IST-REx-ID: 7489 |
Fischer, J. L., & Hensel, S. (2020). Weak–strong uniqueness for the Navier–Stokes equation for two fluids with surface tension. Archive for Rational Mechanics and Analysis. Springer Nature. https://doi.org/10.1007/s00205-019-01486-2
[Published Version]
View
| Files available
| DOI
| WoS
2020 |Submitted| Preprint | IST-REx-ID: 10012 |
Fischer, J. L., Hensel, S., Laux, T., & Simon, T. (n.d.). The local structure of the energy landscape in multiphase mean curvature flow: weak-strong uniqueness and stability of evolutions. arXiv.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2019 |Published| Journal Article | IST-REx-ID: 6617 |
Fischer, J. L. (2019). The choice of representative volumes in the approximation of effective properties of random materials. Archive for Rational Mechanics and Analysis. Springer. https://doi.org/10.1007/s00205-019-01400-w
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2019 |Published| Journal Article | IST-REx-ID: 151 |
Fischer, J. L., & Kneuss, O. (2019). Bi-Sobolev solutions to the prescribed Jacobian inequality in the plane with L p data and applications to nonlinear elasticity. Journal of Differential Equations. Elsevier. https://doi.org/10.1016/j.jde.2018.07.045
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 |Published| Journal Article | IST-REx-ID: 404 |
Fischer, J. L., & Grün, G. (2018). Existence of positive solutions to stochastic thin-film equations. SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/16M1098796
[Published Version]
View
| Files available
| DOI
| WoS
2018 |Published| Journal Article | IST-REx-ID: 606 |
Duerinckx, M., & Fischer, J. L. (2018). Well-posedness for mean-field evolutions arising in superconductivity. Annales de l’Institut Henri Poincare (C) Non Linear Analysis. Elsevier. https://doi.org/10.1016/j.anihpc.2017.11.004
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
| arXiv
2017 |Published| Journal Article | IST-REx-ID: 712 |
Fischer, J. L. (2017). Weak–strong uniqueness of solutions to entropy dissipating reaction–diffusion equations. Nonlinear Analysis: Theory, Methods and Applications. Elsevier. https://doi.org/10.1016/j.na.2017.03.001
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
2017 |Published| Journal Article | IST-REx-ID: 1014 |
Fischer, J. L., & Raithel, C. (2017). Liouville principles and a large-scale regularity theory for random elliptic operators on the half-space. SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/16M1070384
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
2016 |Published| Journal Article | IST-REx-ID: 1318 |
Fischer, J. L., & Otto, F. (2016). A higher-order large scale regularity theory for random elliptic operators. Communications in Partial Differential Equations. Taylor & Francis. https://doi.org/10.1080/03605302.2016.1179318
View
| DOI
| Download (ext.)
2016 |Published| Journal Article | IST-REx-ID: 1317
Fischer, J. L. (2016). Behaviour of free boundaries in thin-film flow: The regime of strong slippage and the regime of very weak slippage. Annales de l’Institut Henri Poincare (C) Non Linear Analysis. Elsevier. https://doi.org/10.1016/j.anihpc.2015.05.001
View
| DOI
2016 |Published| Journal Article | IST-REx-ID: 1315
Brunner, F., Fischer, J. L., & Knabner, P. (2016). Analysis of a modified second-order mixed hybrid BDM1 finite element method for transport problems in divergence form. SIAM Journal on Numerical Analysis. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/15M1035379
View
| DOI
2015 |Published| Journal Article | IST-REx-ID: 1311
Fischer, J. L., & Grün, G. (2015). Finite speed of propagation and waiting times for the stochastic porous medium equation: A unifying approach. SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/140960578
View
| DOI
2015 |Published| Journal Article | IST-REx-ID: 1314
Fischer, J. L. (2015). A posteriori modeling error estimates for the assumption of perfect incompressibility in the Navier-Stokes equation. SIAM Journal on Numerical Analysis. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/140966654
View
| DOI
2015 |Published| Journal Article | IST-REx-ID: 1313
Fischer, J. L. (2015). Estimates on front propagation for nonlinear higher-order parabolic equations: An algorithmic approach. Interfaces and Free Boundaries. European Mathematical Society Publishing House. https://doi.org/10.4171/IFB/331
View
| DOI
2015 |Published| Journal Article | IST-REx-ID: 1316
Fischer, J. L. (2015). Global existence of renormalized solutions to entropy-dissipating reaction–diffusion systems. Archive for Rational Mechanics and Analysis. Springer. https://doi.org/10.1007/s00205-015-0866-x
View
| DOI
2014 |Published| Journal Article | IST-REx-ID: 1309
Fischer, J. L. (2014). Infinite speed of support propagation for the Derrida-Lebowitz-Speer-Spohn equation and quantum drift-diffusion models. Nonlinear Differential Equations and Applications. Birkhäuser. https://doi.org/10.1007/s00030-013-0235-0
View
| DOI
2014 |Published| Journal Article | IST-REx-ID: 1312
Fischer, J. L. (2014). Upper bounds on waiting times for the Thin-film equation: The case of weak slippage. Archive for Rational Mechanics and Analysis. Springer. https://doi.org/10.1007/s00205-013-0690-0
View
| DOI
2013 |Published| Journal Article | IST-REx-ID: 1308
Fischer, J. L. (2013). Advection-driven support shrinking in a chemotaxis model with degenerate mobility. SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/120874291
View
| DOI
2013 |Published| Journal Article | IST-REx-ID: 1307
Fischer, J. L. (2013). Uniqueness of solutions of the Derrida-Lebowitz-Speer-Spohn equation and quantum drift diffusion models. Communications in Partial Differential Equations. Taylor & Francis. https://doi.org/10.1080/03605302.2013.823548
View
| DOI
2013 |Published| Journal Article | IST-REx-ID: 1310
Fischer, J. L. (2013). Optimal lower bounds on asymptotic support propagation rates for the thin-film equation. Journal of Differential Equations. Academic Press. https://doi.org/10.1016/j.jde.2013.07.028
View
| DOI
34 Publications
2024 |Published| Journal Article | IST-REx-ID: 17481 |
Fischer, J. L., & Marveggio, A. (2024). Quantitative convergence of the vectorial Allen–Cahn equation towards multiphase mean curvature flow. Annales de l’Institut Henri Poincare C. EMS Press. https://doi.org/10.4171/AIHPC/109
[Published Version]
View
| Files available
| DOI
2024 |Published| Journal Article | IST-REx-ID: 17887 |
Abels, H., Fischer, J. L., & Moser, M. (2024). Approximation of classical two-phase flows of viscous incompressible fluids by a Navier–Stokes/Allen–Cahn system. Archive for Rational Mechanics and Analysis. Springer Nature. https://doi.org/10.1007/s00205-024-02020-9
[Published Version]
View
| Files available
| DOI
| arXiv
2023 |Published| Journal Article | IST-REx-ID: 10550 |
Fellner, K., Fischer, J. L., Kniely, M., & Tang, B. Q. (2023). Global renormalised solutions and equilibration of reaction-diffusion systems with non-linear diffusion. Journal of Nonlinear Science. Springer Nature. https://doi.org/10.1007/s00332-023-09926-w
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2023 |Published| Journal Article | IST-REx-ID: 14661 |
Carioni, M., Fischer, J. L., & Schlömerkemper, A. (2023). External forces in the continuum limit of discrete systems with non-convex interaction potentials: Compactness for a Γ-development. Journal of Convex Analysis. Heldermann Verlag.
[Preprint]
View
| Download Preprint (ext.)
| WoS
| arXiv
2023 |Published| Journal Article | IST-REx-ID: 10551 |
Cornalba, F., & Fischer, J. L. (2023). The Dean-Kawasaki equation and the structure of density fluctuations in systems of diffusing particles. Archive for Rational Mechanics and Analysis. Springer Nature. https://doi.org/10.1007/s00205-023-01903-7
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 |Published| Journal Article | IST-REx-ID: 10548 |
Duerinckx, M., Fischer, J. L., & Gloria, A. (2022). Scaling limit of the homogenization commutator for Gaussian coefficient fields. Annals of Applied Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/21-AAP1705
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 |Published| Journal Article | IST-REx-ID: 10547 |
Fischer, J. L., Hopf, K., Kniely, M., & Mielke, A. (2022). Global existence analysis of energy-reaction-diffusion systems. SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/20M1387237
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 |Published| Journal Article | IST-REx-ID: 12304 |
De Nitti, N., & Fischer, J. L. (2022). Sharp criteria for the waiting time phenomenon in solutions to the thin-film equation. Communications in Partial Differential Equations. Taylor & Francis. https://doi.org/10.1080/03605302.2022.2056702
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 |Submitted| Preprint | IST-REx-ID: 14597 |
Fischer, J. L., & Marveggio, A. (n.d.). Quantitative convergence of the vectorial Allen-Cahn equation towards multiphase mean curvature flow. arXiv. https://doi.org/10.48550/ARXIV.2203.17143
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2021 |Published| Journal Article | IST-REx-ID: 9335 |
Fischer, J. L., & Matthes, D. (2021). The waiting time phenomenon in spatially discretized porous medium and thin film equations. SIAM Journal on Numerical Analysis. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/19M1300017
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2021 |Published| Journal Article | IST-REx-ID: 9352 |
Fischer, J. L., Gallistl, D., & Peterseim, D. (2021). A priori error analysis of a numerical stochastic homogenization method. SIAM Journal on Numerical Analysis. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/19M1308992
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2021 |Published| Journal Article | IST-REx-ID: 10549 |
Fischer, J. L., & Neukamm, S. (2021). Optimal homogenization rates in stochastic homogenization of nonlinear uniformly elliptic equations and systems. Archive for Rational Mechanics and Analysis. Springer Nature. https://doi.org/10.1007/s00205-021-01686-9
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2020 |Published| Journal Article | IST-REx-ID: 8697 |
Fischer, J. L., & Kniely, M. (2020). Variance reduction for effective energies of random lattices in the Thomas-Fermi-von Weizsäcker model. Nonlinearity. IOP Publishing. https://doi.org/10.1088/1361-6544/ab9728
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2020 |Published| Journal Article | IST-REx-ID: 9039 |
Fischer, J. L., Laux, T., & Simon, T. M. (2020). Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies. SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/20M1322182
[Published Version]
View
| Files available
| DOI
| WoS
2020 |Published| Journal Article | IST-REx-ID: 7489 |
Fischer, J. L., & Hensel, S. (2020). Weak–strong uniqueness for the Navier–Stokes equation for two fluids with surface tension. Archive for Rational Mechanics and Analysis. Springer Nature. https://doi.org/10.1007/s00205-019-01486-2
[Published Version]
View
| Files available
| DOI
| WoS
2020 |Submitted| Preprint | IST-REx-ID: 10012 |
Fischer, J. L., Hensel, S., Laux, T., & Simon, T. (n.d.). The local structure of the energy landscape in multiphase mean curvature flow: weak-strong uniqueness and stability of evolutions. arXiv.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2019 |Published| Journal Article | IST-REx-ID: 6617 |
Fischer, J. L. (2019). The choice of representative volumes in the approximation of effective properties of random materials. Archive for Rational Mechanics and Analysis. Springer. https://doi.org/10.1007/s00205-019-01400-w
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2019 |Published| Journal Article | IST-REx-ID: 151 |
Fischer, J. L., & Kneuss, O. (2019). Bi-Sobolev solutions to the prescribed Jacobian inequality in the plane with L p data and applications to nonlinear elasticity. Journal of Differential Equations. Elsevier. https://doi.org/10.1016/j.jde.2018.07.045
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 |Published| Journal Article | IST-REx-ID: 404 |
Fischer, J. L., & Grün, G. (2018). Existence of positive solutions to stochastic thin-film equations. SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/16M1098796
[Published Version]
View
| Files available
| DOI
| WoS
2018 |Published| Journal Article | IST-REx-ID: 606 |
Duerinckx, M., & Fischer, J. L. (2018). Well-posedness for mean-field evolutions arising in superconductivity. Annales de l’Institut Henri Poincare (C) Non Linear Analysis. Elsevier. https://doi.org/10.1016/j.anihpc.2017.11.004
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
| arXiv
2017 |Published| Journal Article | IST-REx-ID: 712 |
Fischer, J. L. (2017). Weak–strong uniqueness of solutions to entropy dissipating reaction–diffusion equations. Nonlinear Analysis: Theory, Methods and Applications. Elsevier. https://doi.org/10.1016/j.na.2017.03.001
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
2017 |Published| Journal Article | IST-REx-ID: 1014 |
Fischer, J. L., & Raithel, C. (2017). Liouville principles and a large-scale regularity theory for random elliptic operators on the half-space. SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/16M1070384
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
2016 |Published| Journal Article | IST-REx-ID: 1318 |
Fischer, J. L., & Otto, F. (2016). A higher-order large scale regularity theory for random elliptic operators. Communications in Partial Differential Equations. Taylor & Francis. https://doi.org/10.1080/03605302.2016.1179318
View
| DOI
| Download (ext.)
2016 |Published| Journal Article | IST-REx-ID: 1317
Fischer, J. L. (2016). Behaviour of free boundaries in thin-film flow: The regime of strong slippage and the regime of very weak slippage. Annales de l’Institut Henri Poincare (C) Non Linear Analysis. Elsevier. https://doi.org/10.1016/j.anihpc.2015.05.001
View
| DOI
2016 |Published| Journal Article | IST-REx-ID: 1315
Brunner, F., Fischer, J. L., & Knabner, P. (2016). Analysis of a modified second-order mixed hybrid BDM1 finite element method for transport problems in divergence form. SIAM Journal on Numerical Analysis. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/15M1035379
View
| DOI
2015 |Published| Journal Article | IST-REx-ID: 1311
Fischer, J. L., & Grün, G. (2015). Finite speed of propagation and waiting times for the stochastic porous medium equation: A unifying approach. SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/140960578
View
| DOI
2015 |Published| Journal Article | IST-REx-ID: 1314
Fischer, J. L. (2015). A posteriori modeling error estimates for the assumption of perfect incompressibility in the Navier-Stokes equation. SIAM Journal on Numerical Analysis. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/140966654
View
| DOI
2015 |Published| Journal Article | IST-REx-ID: 1313
Fischer, J. L. (2015). Estimates on front propagation for nonlinear higher-order parabolic equations: An algorithmic approach. Interfaces and Free Boundaries. European Mathematical Society Publishing House. https://doi.org/10.4171/IFB/331
View
| DOI
2015 |Published| Journal Article | IST-REx-ID: 1316
Fischer, J. L. (2015). Global existence of renormalized solutions to entropy-dissipating reaction–diffusion systems. Archive for Rational Mechanics and Analysis. Springer. https://doi.org/10.1007/s00205-015-0866-x
View
| DOI
2014 |Published| Journal Article | IST-REx-ID: 1309
Fischer, J. L. (2014). Infinite speed of support propagation for the Derrida-Lebowitz-Speer-Spohn equation and quantum drift-diffusion models. Nonlinear Differential Equations and Applications. Birkhäuser. https://doi.org/10.1007/s00030-013-0235-0
View
| DOI
2014 |Published| Journal Article | IST-REx-ID: 1312
Fischer, J. L. (2014). Upper bounds on waiting times for the Thin-film equation: The case of weak slippage. Archive for Rational Mechanics and Analysis. Springer. https://doi.org/10.1007/s00205-013-0690-0
View
| DOI
2013 |Published| Journal Article | IST-REx-ID: 1308
Fischer, J. L. (2013). Advection-driven support shrinking in a chemotaxis model with degenerate mobility. SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/120874291
View
| DOI
2013 |Published| Journal Article | IST-REx-ID: 1307
Fischer, J. L. (2013). Uniqueness of solutions of the Derrida-Lebowitz-Speer-Spohn equation and quantum drift diffusion models. Communications in Partial Differential Equations. Taylor & Francis. https://doi.org/10.1080/03605302.2013.823548
View
| DOI
2013 |Published| Journal Article | IST-REx-ID: 1310
Fischer, J. L. (2013). Optimal lower bounds on asymptotic support propagation rates for the thin-film equation. Journal of Differential Equations. Academic Press. https://doi.org/10.1016/j.jde.2013.07.028
View
| DOI